
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Riza Agung Firmansyah: Improving the Adaptive Monte ... Volume 12 Number 3 August 2023

Improving the Adaptive Monte Carlo Localization
Accuracy Using a Convolutional Neural Network
Riza Agung Firmansyah1, Tri Arief Sardjono2, Ronny Mardiyanto3

1,2,3 Department of Electrical Engineering Faculty of Intelligent Electrical and Informatics Technology Institut Teknologi Sepuluh Nopember, Surabaya, 60111 INDONESIA (tel.: 031-

5994251-54, ext. 1206/031-5947302; fax: 031-5931237, email: 17022211015@mhs.its.ac.id, 2sardjono@bme.its.ac.id, 3ronny@elect-eng.its.ac.id)

[Received: 30 March 2023, Revised: 14 June 2023]

Corresponding Author: Ronny Mardiyanto

ABSTRACT — This paper explains the increase in localization system accuracy of the adaptive Monte Carlo localization

(AMCL) in robots utilizing a convolutional neural network (CNN). The localization system in robots is defined as the

position recognition process of robots within their working environment. This system is essential as it allows robots to

navigate and map efficiently and accurately. Without appropriate localization, robots cannot operate effectively and can

encounter troubles such as losing direction or bumping into objects. AMCL is a popular localization system and is widely

applied in robots. This method utilizes the changes in the robots’ position and light detection and ranging (LiDAR) sensor

reading as input. Reading of robot position changes is susceptible to error due to slips or wheel deformations. The inaccuracy

of reading the robots’ position change results in the inaccuracy of the robots’ position prediction by AMCL, so improvements

are required. Novelty in this paper includes providing compensation values from AMCL results for the error to be small.

These compensation values were obtained from the CNN training results; hence, the proposed method was dubbed

AMCL+CNN. Inputs given to the CNN were the changes in wheel odometry values and distance reading by the LiDAR

sensor. CNN outputs were compared to the target data in the form of the robots’ actual position from observation results.

Network training was conducted for as many as 200 epochs to achieve the lowest validation loss. Testing was done on a

robot installed with a robot operating system (ROS). Training and testing datasets were obtained from rosbag data when the

robot traversed the testing area. In straight and turn scenarios, obtained AMCL+CNN algorithms had fewer errors than the

regular AMCL and Monte Carlo localization (MCL). Results obtained are also superior in terms of positional error metrics

when compared to several other comparison methods.

KATA KUNCI — Robot Localization, LiDAR, AMCL, CNN.

I. INTRODUCTION

Mobile robots have been utilized in some sectors like

agriculture [1], health [2], hospitality [3], and tourism [4]. In

doing the work, robots have equipment installed, such as

grippers [5], tanks on the AGV robot [6], and health

measurement equipment to measure persons’ vital signs [7]–

[9]. Robots must perceive their actual position to work

correctly. If not, they cannot work as per previously given plans

or works [10]. This process is commonly dubbed robot

localization.

To support localization systems indoors, generally, robots

use 2D LiDAR scanner sensors [10]-[12]. Those sensors have

a pretty good ranging capability in all directions (360°). With

rapid development in robotics, 3D LiDAR sensors have

become prevalently employed [13], [14]. The ranging

capability of 3D LiDAR is better than that of 2D LiDAR, but

its price in markets is rather high. Visual-based sensors, such

as RGB camera, has the ability to recognize features around

robots [15], [16]. However, the RGB camera’s ranging

capability is not as good as that of LiDAR, so this sensor still

needs to be paired with other sensors. In addition, feature

recognition cannot work optimally in featureless environments.

Other visual-based sensors, such as RGB-D cameras, have

ranging capabilities based on depth [17]–[19]. However, its

range is limited to around 87° in the horizontal direction.

The localization system is one of the essential stages in

robotic research as it is the basis for the navigation system and

map building [20]. The accuracy and efficiency of the

localization system play a crucial role in the robots’

performance when carrying out their work. Therefore, it is

necessary to conduct research on improving the accuracy of

measurement and efficiency. The efficiency in question is

computational efficiency and cost efficiency. An increase in

performance can be carried out using good-quality sensors or a

combination of several sensors or sensor fusion [4], [21], [22].

One frequently used localization method is the particle

filter-based method, namely the Monte Carlo localization

(MCL). Despite its need-to-be-addressed shortcomings, this

method can effectively predict the robots’ location. MCL

requires numerous accurate and up-to-date sensor data and

environmental information to generate an accurate estimation.

If sensor data are unavailable or inaccurate, the MCL results

will be very unsatisfactory. Furthermore, this method is

extremely sensitive to environmental changes, for example,

layout modifications or new object additions. It implies that the

algorithm must be regularly updated to guarantee accurate

results. MCL also necessitates longer computation and time to

compute an accurate location probability, which may lead to a

delay in robot responses. Therefore, it is essential to find an

alternate solution to resolve these shortcomings in the MCL

implementation to the robots.

An adaptive MCL (AMCL) is another variation of the MCL

algorithms used to determine the position and heading of robots

in an unknown environment. The AMCL combines the Kalman

filter and MCL to adjust the particle distribution and reduce the

required number of particles to achieve the same accuracy. It

adapts the required number of particles in response to changing

environmental conditions. This way enables AMCL to

optimize the particles needed and increase efficiency.

Generally, AMCL is used to ascertain the robots’ position and

heading in an unknown environment more rapidly and

accurately than the regular MCL. The AMCL combines the

MCL technique and the Kalman filter to improve the accuracy

and robustness of the robots’ position estimation. Nevertheless,

EN-167

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Volume 12 Number 3 August 2023 Riza Agung Firmansyah: Improving the Adaptive Monte ...

both algorithms are still affected by error potentials during the

motion update process. This motion update is derived from

reading changes in the robots’ position based on sensor data of

wheel odometry. The most common error that occurred is

induced by wheel slips and deformations.

Technique on robot localization using 2D LiDAR has been

conducted [23]. This technique employed LiDAR-based

localization with an occupancy grid map combined with a

camera. This camera functioned to read texts placed around the

robots’ working area. In the indoor localization, the results

were pretty good. Another technique used in robot localization

was 2DLaserNet [24]. This technique employed a

convolutional neural network (CNN) to identify rooms,

corridors, and doors in the robot’s working area. Identification

was carried out based on the reading of 2D LiDAR. A 2D

LiDAR with neuron networks has also been used [25].

The accuracy of reading AMCL can also be increased using

implicit representation-based Monte Carlo localization (IR-

MCL) [26]. This technique performs position estimation based

on 2D LiDAR data. The robot’s working environment was

represented in the form of a neural occupancy field (NOF)

created using an artificial neural network (ANN). NOF was

generated using a 2D LiDAR scan as input, with the output

being the occupancy map’s probability of suitability. This

technique can generate a more accurate estimate of the robot’s

position and heading. The robot localization system using

machine learning has several advantages compared to the

AMCL method. Machine learning systems have the ability to

automatically learn and adapt to their environment, enabling

them to generate more accurate location estimates in changing

environments.

This paper proposes to increase the accuracy of the AMCL

localization system using CNN. In the proposed method, CNN

functioned to predict possible errors arising in the robot’s

position and heading. The resulting error prediction value was

used to compensate for the AMCL output on the x-axis and y-

axis positions and the z-axis (yaw) rotation. If the accuracy of

the robot’s position increases, the overall performance of the

robot improves. The proposed method was run on a robot

equipped with a robot operating system (ROS).

The following sections of this paper describe the research

methodology and result obtained. Section II covers the research

methodology that have been carried out, starting from robot

design, CNN design, testing, and evaluation metrics. Part III

discusses the results of the tests that have been done and Part

IV shows the conclusions based on the test results.

II. METHODOLOGY

In this section, steps to achieve the desired objectives are

explained. The first step involved the preparation of the mobile

robot that had ROS installed. After that, the ROS node was

prepared to support the system to be built. On the basis of the

LiDAR scan and wheel odometry inputs, an artificial neuron

network with CNN architecture was made to determine the

number of optimal particles. Once the robot, ROS framework,

and CNN model were ready, datasets for the training process

were collected. These datasets were in the form of rosbag files,

from which sensor reading data were extracted offline. The

training proses was conducted based on these extracted data.

After the optimal model was obtained, it was then implemented

to the robot localization system that had been built. The optimal

value was measured based on the lower error pose values and

error heading than the regular MCL and default AMCL in ROS.

The process of the proposed method is exhibited in Figure 1.

The addition of an inertial measurement unit (IMU) sensor and

wheel odometry to the LiDAR sensor used distinguishes the

proposed method from several prior methods [24], [25].

A. HARDWARE DESIGN OF THE MOBILE ROBOT

The mobile robot used was built with a differential drive

mobile robot configuration. It was made with a length of 300

mm, a width of 200 mm, and a height of 100 mm. The wheels

had a diameter of 65 mm and were attached at the back. The

Figure 1. Block diagram of the proposed robot localization.

EN-168

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Riza Agung Firmansyah: Improving the Adaptive Monte ... Volume 12 Number 3 August 2023

distance between the wheels was 250 mm. Castor wheels were

attached at the front with a distance of 170 mm to the rear axle.

A 2D LiDAR sensor was installed above the castor to support

the localization system. The robot used is shown in Figure 2.

The robot made had several supporting electronic devices

whose connections between components are shown in Figure 3.

NVIDIA Jetson Nano was used as the central processor in

which ROS was installed. The general-purpose input-output

(GPIO) pin on the Jetson Nano was connected to an IMU

BNO055 sensor. The two devices were connected by inter-

integrated circuit (I2C) communication. The IMU sensor was

connected to the ROS system using the /imu_node node, which

generated the /imu_data topics. In order to control actuators,

Arduino Uno was connected to NVIDIA Jetson Nano using

universal serial bus (USB) communication. In ROS, the

communication was done using the rosserial_arduino

(/serial_node) node. Arduino was responsible for regulating the

speed of the DC motor in accordance with the Jetson Nano via

topic /cmd_vel commands. The pulse width modulation (PWM)

signal from the Arduino was connected to the L298 motor

driver so that the motor speed could vary. When the motor

rotated, the rotary encoder sensor sent pulses to the Arduino

pins, which were then processed into speed data (/left_speed

and /right_speed) and the number of wheel rotations (/left_ticks

and /right_tick topics).

B. ROS FRAMEWORK DESIGN

ROS is a meta-operating system run on the robot made. It

has several interconnected nodes to support the robot’s

performance. Using topics, each node can be connected to other

nodes. Topics comprise messages containing data on sensor

reading, the robot’s position, and so on. This research used

several default nodes or default ROS, namely /rpLiDAR_node,

/AMCL, /movebase, and /SLAM_gmapping. In addition to

default nodes, other nodes to support the robot’s performance

were also created, including /ekf_odom_pub, which functioned

to run the extended Kalman filter (EKF). Then, /datalogger

node functioned to extract sensor data previously stored in the

rosbag.

The /rpLiDAR_node node is one of the essential nodes in

the ROS-based robot navigation system. RPLIDAR is a 2D

LiDAR sensor that uses laser beams to measure the distance

and angle of surrounding objects. In ROS, the /rpLiDAR_node

node functions to read data from the RPLIDAR sensor and

generates /scan topics later used by other nodes in ROS. The

/scan topics generated by the RPLIDAR node contain each

point’s angle and distance data around the LiDAR sensor.

These data are accessible by reading /scan topics on the child

msg.ranges[0-719], of which a value of 0-719 represents a 0.5°

increase in each angle. These data are then represented in the

form of arrays so that they can be utilized for environmental

mapping or robot navigation autonomously. Moreover, data

from /scan topics can be used to prevent the robot from

colliding with nearby obstacles or objects. Users can utilize the

ROS package provided by the RPLIDAR producer to run the

/rpLiDAR_node node. Once it operates, the /rpLiDAR_node

node will perpetually read data from the sensor and periodically

generate /scan topics as per predetermined frequencies. It

enables the robot to continuously update information on its

surroundings and make precise decisions when navigating.

The subsequent node is the /ekf_odom_pub node, which

operated EKF on ROS. EKF can be used to fuse data from the

rotary encoder and IMU sensors. The combination of the two

sensors aims to improve the odometry system of the robot. The

rotary encoder on the wheel was used to measure the distance

traveled by the robot linearly. In contrast, the IMU was used to

measure the acceleration and angular velocity of the robot. The

data from these two sensors were combined using the EKF

filter to estimate the position and heading of the robot more

accurately. In this node, several parameters needed to be set,

including the diameter of the wheels used, the distance between

the wheels or the wheelbase, and the number of encoder pulses

when the robot moved one meter.

The SLAM gmapping algorithm was used to obtain the

occupancy grid map of the room. The SLAM gmapping process

was initiated by subscribing data from the LiDAR sensor and

robot position (from /ekf_odom_pub topics). Then, the sensor

data were converted into a gridmap by placing each particle

scan of the LiDAR sensor on a grid that corresponded to the

robot’s current position. The grid was then updated to reflect

each newly received scan. Subsequently, the grid was matched

with the results of the previous scan. It was used to determine

the most probable transformation between the two scans when

updating the robot’s position. Furthermore, the map grid data

were converted into an occupancy grid which stated the

Figure 2. Visual form of the robot used.

Figure 3. Block diagram of the connection between the components.

Figure 4. Results of the occupancy grid map from SLAM gmapping.

EN-169

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Volume 12 Number 3 August 2023 Riza Agung Firmansyah: Improving the Adaptive Monte ...

probability of whether the room in the grid was occupied. After

the map was created, gmapping published the resulting map via

the appropriate ROS topics so that it could be used by other

nodes in the system. The occupancy grid map results are shown

in Figure 4.

The /AMCL node operated by acquiring data from the

LiDAR sensor and the occupancy grid map, then generating the

robot’s poses (position and heading) within the environment.

The /AMCL node required data from the LiDAR sensor and the

occupancy grid map to generate robot poses. Data from the

LiDAR sensor were used to detect objects and walls around the

robot, while the occupancy grid map was used as a reference to

determine the robot’s position. Following the collection of the

LiDAR sensor and the occupancy grid map, the /AMCL node

processed the data to produce the robot poses. The poses were

generated in the form /AMCL_pose, which could be used to

navigate the robot autonomously.

C. ROSBAG DATASET COLLECTION

After the entire nodes were connected, the process

proceeded by retrieving the dataset in the form of a rosbag file.

Rosbag is a built-in tool in ROS (default tools) used to record

topic data in a file. It was first necessary to determine the topics

to be recorded and how long the recording would take to record

data using a rosbag. Then, the recording was started by running

the “rosbag record” command and providing a file name to

store the recording data. Once the recording was complete, the

rosbag file could be used to play back the recording using the

“rosbag play” command.

The dataset was collected using scenario by running the

robot from the start position or point P1 to point P2. Next, the

robot rotated 90° counterclockwise in place. Then, the robot

was moved to point P3 and rotated 90° counterclockwise. The

position of these points in the test area is shown in Figure 5. In

this scenario, the robot was moved in straight and turn positions,

each of which was carried out twice. Therefore, from this

scenario, the robot data would be obtained when the robot

moved straight and turned. These data served as a reference for

the accuracy of the proposed algorithm. Each scenario was run

four times and stored in a different rosbag, resulting in four

rosbags that were extracted into training and testing datasets.

D. ROSBAG EXTRACTION FOR TRAINING DATASETS

Collecting training datasets is a crucial step in creating a

quality machine-learning model. This CNN machine learning

used training and testing datasets in text form of CSV format.

Meanwhile, from ROS, datasets were stored in a rosbag form,

hence a rosbag to CSV conversion was needed for the training

and testing datasets could be used. Based on these needs, a node

/datalogger was created. The node converted the rosbag into a

CSV file, beginning from the start until the robot finished

pivoting 90° at point P3. The stored data were in from of

/AMCL_pose, /odom_combined, and /scan topics. The

connection between nodes when running this process is shown

in Figure 6.

The /AMCL_pose topics were served as a reference or

comparative data after the correction process with CNN was

complete. The /odom_combined topics were used to determine

the robot’s movement within a particular sampling time. These

topics contained robot position and heading data based on the

EKF process from the wheel odometry and IMU sensors. By

comparing values at the current time (t) with the previous time

(t-1), the robot’s displacement value can be determined. In the

training dataset created, the data stored were only the robot’s

displacement with respect to the x-axis, y-axis, and angular

displacement with respect to the z-axis or yaw. As a result, in

this training dataset, the robot’s displacement value required

three columns of data. The displacement equations are

expressed in (1) to (3), where the OC(s,t) value is the topic

value of /odom_combined on the s-axis. The notation s in the

equation denotes the linear odom axis when written using

lowercase letters, while the capital letters denote the angular

axis.

The /scan topics were necessitated to find the difference in

the values of the distance readings for each time sample. The

difference in values that appears can represent the movement

of the robot in the x-axis and y-axis. These difference values

were inputted into CNN input because they were expected to

correct the robot displacement values obtained from

/odom_combined. The total differences in scan values (Δscan)

in the dataset were 720 data columns. The Δscan value can be

calculated using (4). The Δscan value is the value of the

difference between the readings of the LiDAR sensor distance,

while n is the direction or angle of the LiDAR sensor reading

with a value of 0-719. The value of n represents an increase for

every 0.5°. The valscan value was obtained from reading the

/scan topics in the msg.range[n] message, while t is the current

time and t-1 is the previous sampling time.

 Δ𝑜𝑑𝑜𝑚𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑂𝐶(𝑥, 𝑡) − 𝑂𝐶(𝑥, 𝑡 − 1) (1)

 Δ𝑜𝑑𝑜𝑚𝑙𝑖𝑛𝑒𝑎𝑟(𝑦) = 𝑂𝐶(𝑦, 𝑡) − 𝑂𝐶(𝑦, 𝑡 − 1) (2)

 Δ𝑜𝑑𝑜𝑚𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑧) = 𝑂𝐶(𝑍, 𝑡) − 𝑂𝐶(𝑍, 𝑡 − 1) (3)

 Δ𝑠𝑐𝑎𝑛(𝑛) = 𝑣𝑎𝑙𝑠𝑐𝑎𝑛(𝑛, 𝑡) − 𝑣𝑎𝑙𝑠𝑐𝑎𝑛(𝑛, 𝑡 − 1). (4)

The CNN architecture created was supervised-machine

learning, so target data were needed. The target used was the

difference between the position and the robot’s actual heading

based on the direct observation results with the /AMCL_pose

value obtained from the rosbag file.

Figure 5. Rosbag robot workspace during rosbag collection.

Figure 6. Connection between nodes when extracting a rosbag file.

EN-170

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Riza Agung Firmansyah: Improving the Adaptive Monte ... Volume 12 Number 3 August 2023

E. DESIGN OF THE CNN ARCHITECTURE

The proposed design of the CNN architecture was made

using TensorFlow, involving several stages. The first stage was

layer initialization which functioned to input training data into

TensorFlow and created basic layers from CNN. Layer

initialization is essential because it ensures that all data and

layers used in the training process are available and ready to

use. The next stage was to create a convolution layer that

performed convolution operations on each part of the input data.

The convolution layer makes capturing important features in

the input data possible, which are then passed on to the next

layer.

After the convolution layer, a pooling layer was created to

reduce the size of the feature map, making it easier to pass on

to the next layer. The pooling process also helps reduce

overfitting and speeds up the training process. Following the

pooling process, a flattening layer process must be carried out,

namely changing the pooling results into a longer array. The

flattening layer process aims to prepare data before being

forwarded to the fully connected layer. The number of nodes in

this layer was 800 nodes. The final stage was to create a fully

connected layer, which was the layer that performed the final

classification and predicted the model output. This fully

connected layer consisted of two hidden layers with a total of

2,048 and 512 nodes, respectively. Meanwhile, the output layer

consisted of three nodes, each generating error estimates on the

linear x-axis and y-axis and the angular z-axis. The CNN

architecture used is depicted in Figure 7.

F. NETWORK TRAINING

To obtain the optimal model, CNN created was given a

dataset prepared to carry out the training process. The dataset

was further divided into a training dataset and a validation

dataset to measure the performance of the model during

training. In the training used, the datasets for training were 75%

of all datasets, while the remaining 25% were used for

validation datasets. The test datasets, on the other hand, were

datasets that were excluded from the training procedure.

After the datasets were ready to be read in the training stage,

the model was compiled using the Adam optimizer. Because

the distribution of the datasets and targets ranged from -1 to 1,

the activation function employed was tanh. The loss function

and evaluation matrix used were the mean squared error (MSE).

The learning rate used was 0.01, which was the default value

of the Adam optimizer. The training process was carried out

until the optimal weight was obtained. In this training, the

weight is considered optimal if the lowest validation loss/MSE

value is obtained.

G. EVALUATION MATRIX

It is necessary to calculate the robot’s total position error.

The robot’s position was represented using the cartesian axes

with an assumption that the value of z = 0 since the robot was

on a flat surface. The total position error was calculated based

on the difference in the robot’s target and position toward the

x-axis and y-axis. This value was calculated using (5) and (7).

 𝑃𝐸(𝑥, 𝑦) = √(𝐸𝑋)
2 + (𝐸𝑌)

2 (5)

 𝐸𝑋 = 𝐴𝑐𝑡𝑋 − 𝑅𝑒𝑠𝑋 (6)

 𝐸𝑌 = 𝐴𝑐𝑡𝑌 − 𝑅𝑒𝑠𝑌 (7)

where PE(x,y) is the total position error in meters, EX is the error

on the x-axis, EY is the error on the y-axis, ActX is the actual

value of the robot on the x-axis, ActY is the actual value of the

robot on the y-axis, and the ResX and ResY values are the results

of the robot’s position from the algorithm being tested

according to the axis in question. The algorithms tested include

regular MCL, ROS built-in AMCL, and AMCL+CNN which

are the proposed algorithms.

Heading error shows the difference between the target

heading and the actual heading. This heading was measured on

the z-axis or the yaw of the robot. It was done because the robot

was assumed to be on a flat surface. The heading error value

was obtained using (8).

 𝐻𝐸 = 𝐴𝑐𝑡𝑌𝐴𝑊 − 𝑅𝑒𝑠𝑌𝐴𝑊 (8)

where HE denotes the heading error on the z-axis or yaw in

degree (°), the ActYAW value is the actual yaw value from the

observation, and the ResYAW value is the yaw value obtained

from applying the algorithm tested.

III. RESULT AND DISCUSSION

This section explains the testing results of the localization

system applied to the robot. The testing began by creating an

occupancy grid map and running the regular MCL localization

algorithm with various particle numbers. The number of

particles tested was 1,000 up to 5,000, with an interval of 1,000

Figure 7. Proposed convolutional neural network architecture.

EN-171

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Volume 12 Number 3 August 2023 Riza Agung Firmansyah: Improving the Adaptive Monte ...

particles. It was then followed by the default AMCL algorithm

with particle values ranging from 100 to 5,000. The last was

testing the AMCL+CNN algorithm, which is the method

proposed in this paper. In addition, the test results were also

compared with that of earlier study that proposed IR-MCL [26].

Several testing were then compared to determine the average

error level that occurred. The lower the error occurs, the more

accurate or better the localization system.

A. MAKING OF OCCUPANCY GRID MAP AND ROSBAG

Prior to the localization system testing, the occupancy grid

map of the operating area was created. This map was created

using the SLAM gmapping algorithm. The SLAM gmapping

worked by subscribing the LiDAR sensor data (from scan

rpLiDAR topics) and robot poses (from ekf_odom_pub topics).

The robot operated slowly to obtain a good map since there was

slip potential at high speed. In this testing, the robot was

operated at a speed of 0.1 m/s.

During the process of creating the map, the robot was

placed in the P1 position at the coordinate of (0,0).

Subsequently, the robot was operated manually using the

/teleop_twist_keyboard node. It was operated throughout every

corner of the room that the LiDAR scan could reach. After

completing this step, the map was saved using the /map_saver

node. The resulting map is depicted in Figure 5. Once obtained,

the map saved with /map_server was used for later testing.

Rosbag recording was done by operating the robot in

position P1. Before that, the “rosbag record” command must be

executed first. Next, the robot was moved to point P2 and

rotated 90° in place. The robot was then moved to the position

of point P3, where it continued by spinning 90° in place. Next,

the rosbag recording was stopped and continued with the

rosbag storage command. Storage of the rosbag was carried out

four times, with each test being named “A”, “B”, “C”, and “D.”

B. TESTING WITH THE REGULAR MCL

After the occupancy grid map was created, the map, as

shown in Figure 5, was used to test the localization system. The

test was carried out by running the stored rosbags. Each rosbag

was played back and simultaneously ran the regular MCL

algorithm. The /AMCL node from the default ROS was

configured to use a fixed number of particles and disable

particle updates in order to produce regular MCL. The number

of particles used was 1,000 to 5,000, with an interval of 1,000

particles, resulting in five variations in the number of particles,

as presented in Table I.

In testing with a straight scenario, 3,000 particles produced

the smallest position error results of 0.0243 m in the straight

scenario and 0.0139 m in the turn scenario. Meanwhile, the

largest position error was generated by the number of 2,000

particles, namely 0.0558 m in the straight scenario and 0.0826

m in the turn scenario. However, the number of 2,000 particles

produced the smallest heading error in the turn scenario, which

was 7.79°. Whereas, in the straight scenario, the smallest

heading error occurred when the number of particles was 1,000.

According to the regular MCL testing, the error position

average that occurred when the robot moved straight was

0.0323 m. This error value was recorded when the robot moved

from P1 to P2 and from P2 to P3. The error heading average

that occurred in that scenario was 12.87°. The error position

and heading values in the turn scenario were obtained when the

robot turned pivotally on P2 and P3 by 90°. The position error

when turning was 0.0304 m, and the heading error was 10.82°.

C. TESTING WITH THE DEFAULT AMCL IN ROS

During testing with default AMCL in ROS, the number of

particles was set to 100 up to 5,000 particles. Data testing was

carried out four times on different rosbag files. It was carried

out in the same manner as regular MCL testing. However, this

testing updated the number of particles in the /AMCL node.

Table II presents the results of the default AMCL or default

ROS testing. The average position error of the four rosbags was

0.0297 m in the straight scenario and 0.023 m in the turn

scenario, while the heading error was 12.25° in the straight

scenario and 13.73° in the turn scenario.

Based on these data, AMCL provides a better robot position

value when compared to MCL. It is shown in Table II, as

evidenced by the smaller average position error values.

However, for heading errors, AMCL actually produced a

higher error value when turning, whereas when going straight,

the heading error value only dropped below 1°. The two data

obtained from MCL and AMCL were corrected using the

addition of CNN, and then compared to the data generated by

AMCL+CNN.

D. TESTING WITH THE AMCL+CNN

The AMCL+CNN testing was carried out by correcting the

AMCL output value to be close to the actual value based on

previously trained data. The training process was performed

using the model as described in subsections II.E and II.F. The

dataset for training contained 200 data with 723 inputs and 3

outputs. The CNN network training was carried out ten times

with a maximum variation of epochs. The number of epochs

tested ranged from 50 to 500 with 50 intervals. Throughout

training, the validation loss value served as the reference metric

observed. The smaller the validation loss value, the better the

training results. The best results in this training were at a value

of 200 epochs, resulting in a validation loss of 0.0148.

The most optimal weight of the training was then tested on

the testing dataset. This dataset had a total of 114 data with a

total of 723 inputs and 3 outputs. The outputs in this test dataset

were used as a reference for the robot’s position and heading.

TABLE I

POSITION AND HEADING ERROR OF THE REGULAR MCL

Number

of

Particles

Position Error (m) Heading Error (°)

Straight Turn Straight Turn

1000 0.0277 0.0236 12.49 12.28

2000 0.0558 0.0826 13.98 7.79

3000 0.0243 0.0139 12.60 11.45

4000 0.0249 0.0164 12.62 10.80

5000 0.0287 0.0155 12.68 11.79

Average 0.0323 0.0304 12.87 10.82

TABLE II

POSITION AND HEADING ERROR OF THE DEFAULT AMCL IN ROS

Rosbag
Position Error (m) Heading Error (m)

Straight Turn Straight Turn

A 0.0262 0.0112 11.50 10.75

B 0.0262 0.0106 11.50 10.41

C 0.0229 0.0381 12.81 15.87

D 0.0434 0.0322 13.18 17.90

Average 0.0297 0.0230 12.25 13.73

EN-172

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Riza Agung Firmansyah: Improving the Adaptive Monte ... Volume 12 Number 3 August 2023

The output of the AMCL+CNN algorithm represents the actual

position and heading of the robot. Based on these two values,

the position error and heading error values could be identified.

Based on the comparative data that had been obtained, a

comparison was made between the test data. From Table III and

Table IV, it can be seen that the position error and heading error

values for AMCL+CNN in the straight and turn scenarios are

always smaller than the regular MCL and AMCL ROS. The

results of the average position error of the four rosbags with the

AMCL+CNN algorithm was 0.0219 m in the straight scenario

and 0.0186 m in the turn scenario. In contrast, for the heading

error, the straight scenario obtained a value of 7.95° and 8.76°

for the turning scenario gets value.

Additionally, the results of conducted research [26] were

used. In this testing, the estimated position of the robot was

tested using the Monte Carlo localization + exploiting text

spotting (NMCL) and implicit representation-based MCL (IR-

MCL). Compared with these methods, the proposed method,

AMCL+CNN, yielded the smallest position error, which was

0.0202 m (the average of straight and turning scenarios). The

NMCL algorithm in testing produced a position error value of

0.1369 m, while the IR-MCL produced a position error of

0.0687 [26]. However, the value of the heading error from

AMCL+CNN is the biggest heading error, so it still has the

potential for improvement.

IV. CONCLUSION

The improvement of the AMCL algorithm accuracy using
CNN for robot in indoor conditions has been realized. By using
AMCL+CNN instead of the default AMCL or regular MCL,
the error levels were successfully reduced. In the going straight
scenario, the resulting positional error downed to 0.022 m
compared to the default AMCL or regular MCL with 0.0297 m
and 0.0323 m, respectively. At the same time, the heading error
when going straight dropped to 7.95° from the default AMCL
value of 12.25° and the regular MCL value of 12.87°. In the
turning scenario, the resulting position error dropped to 0.0186
m compared to the default AMCL and regular MCL, which
were 0.023 m and 0.0304 m, respectively. The heading error in
the going straight scenario decreased to 8.76° compared to the
default AMCL value of 13.73° and regular MCL value of
10.58°. With a lower error value, the robot’s performance when

running the navigation system or other work will be more
optimal. The proposed method has a better positional error than
the AMCL, NMCL, and IR-MCL methods.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest with

any parties during the research and writing of the article entitled

“Improving the Adaptive Monte Carlo Localization Accuracy

Using a Convolutional Neural Network.”

AUTHOR CONTRIBUTION

Robot making, Riza Agung Firmansyah; testing, Riza

Agung Firmansyah; analysis, Riza Agung Firmansyah;

advanced analysis, Tri Arief Sardjono and Ronny Mardiyanto;

article writing, Riza Agung Firmansyah, Tri Arief Sardjono,

and Ronny Mardiyanto.

REFERENCES

[1] F. Rovira-Más, V. Saiz-Rubio, and A. Cuenca-Cuenca, “Augmented

Perception for Agricultural Robots Navigation,” IEEE Sens. J., Vol. 21,

No. 10, pp. 11712–11727, May 2021, doi: 10.1109/JSEN.2020.3016081.

[2] S. Karmore et al., “IoT-Based Humanoid Software for Identification and

Diagnosis of Covid-19 Suspects,” IEEE Sens. J., Vol. 22, No. 18, pp.

17490–17496, Sep. 2022, doi: 10.1109/JSEN.2020.3030905.

[3] P.-Y. Yang, T.-H. Chang, Y.-H. Chang, and B.-F. Wu, “Intelligent

Mobile Robot Controller Design for Hotel Room Service with Deep

Learning Arm-Based Elevator Manipulator,” 2018 Int. Conf. Syst. Sci.,

Eng. (ICSSE), 2018, pp. 1–6, doi: 10.1109/ICSSE.2018.8520030.

[4] B.P.E.A. Vasquez, R. Gonzalez, F. Matia, and P. De La Puente, “Sensor

Fusion for Tour-Guide Robot Localization,” IEEE Access, Vol. 6, pp.

78947–78964, Dec. 2018, doi: 10.1109/ACCESS.2018.2885648.

[5] Y. Peng et al., “Research Progress of Urban Dual-Arm Humanoid Grape

Harvesting Robot,” 2021 IEEE 11th Annu. Int. Conf. CYBER Technol.

Automat. Control, Intell. Syst. (CYBER), 2021, pp. 879–885, doi:

10.1109/CYBER53097.2021.9588266.

[6] D. Shi, H. Mi, E.G. Collins, and J. Wu, “An Indoor Low-Cost and High-

Accuracy Localization Approach for AGVs,” IEEE Access, Vol. 8, pp.

50085–50090, Mar. 2020, doi: 10.1109/ACCESS.2020.2980364.

[7] R.A. Firmansyah, Y.A. Prabowo, and T. Suheta, “Thermal Imaging-

Based Body Temperature and Respiratory Frequency Measurement

System for Security Robot,” Przegląd Elektrotechniczny, Vol. 98, No. 6,

pp. 126-130, 2022, doi: 10.15199/48.2022.06.23.

[8] R.M. Ñope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1:

Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance

at Wholesale-Supermarket Entrances,” 2021 Glob. Med. Eng. Phys.

Exch./Pan Amer. Health Care Exch. (GMEPE/PAHCE), 2021, pp. 1–7,

doi: 10.1109/GMEPE/PAHCE50215.2021.9434874.

[9] A. Carlucci, M. Morisco, and F. Dell’Olio, “Human Vital Sign Detection

by a Microcontroller-Based Device Integrated into a Social Humanoid

Robot,” 2022 IEEE Int. Symp. Med. Meas., Appl. (MeMeA), 2022, pp. 1–

6, doi: 10.1109/MeMeA54994.2022.9856407.

[10] L. Garrote, T. Barros, R. Pereira, and U.J. Nunes, “Absolute Indoor

Positioning-aided Laser-based Particle Filter Localization with a

Refinement Stage,” IECON 2019 - 45th Annu. Conf. IEEE Ind. Electron.

Soc., 2019, pp. 597–603, doi: 10.1109/IECON.2019.8927475.

[11] M.-A. Chung and C.-W. Lin, “An Improved Localization of Mobile

Robotic System Based on AMCL Algorithm,” IEEE Sens. J., Vol. 22, No.

1, pp. 900–908, Jan. 2022, doi: 10.1109/JSEN.2021.3126605.

[12] S.J. Dignadice et al., “Application of Simultaneous Localization and

Mapping in the Development of an Autonomous Robot,” 2022 8th Int.

Conf. Control Automat., Robot. (ICCAR), 2022, pp. 77–80, doi:

10.1109/ICCAR55106.2022.9782658.

[13] A. Ehambram, L. Jaulin, and B. Wagner, “Hybrid Interval-Probabilistic

Localization in Building Maps,” IEEE Robot., Autom. Lett., Vol. 7, No.

3, pp. 7059–7066, Jul. 2022, doi: 10.1109/LRA.2022.3181371.

[14] K. Żywanowski, A. Banaszczyk, M.R. Nowicki, and J. Komorowski,

“MinkLoc3D-SI: 3D LiDAR Place Recognition with Sparse

Convolutions, Spherical Coordinates, and Intensity,” IEEE Robot.,
Autom. Lett., Vol. 7, No. 2, pp. 1079–1086, Apr. 2022, doi:

10.1109/LRA.2021.3136863.

TABLE III

POSITION AND HEADING ERROR OF THE AMCL+CNN

Rosbag
Position Error (m) Heading Error (m)

Straight Turn Straight Turn

A 0.0076 0.0059 4.03 4.06

B 0.0076 0.0075 4.03 3.95

C 0.0255 0.0280 11.74 12.17

D 0.0470 0.0328 12.00 14.87

Average 0.0219 0.0186 7.95 8.76

TABLE IV

ERROR COMPARISON FOR EACH ALGORITHM

Algorithm
Average Position

Error (m)

Average Heading

Error (°)

Regular MCL 0.0314 11.85

AMCL ROS 0.0264 12.99

NMCL [26] 0.1369 2.37

IR-MCL [26] 0.0687 1.19

AMCL+CNN 0.0202 8.35

EN-173

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
p-ISSN 2301–4156 | e-ISSN 2460–5719

Volume 12 Number 3 August 2023 Riza Agung Firmansyah: Improving the Adaptive Monte ...

[15] W. Shen, Y. Jia, J. Zhu, and X. Qian, “A Fast Monocular Visual–Inertial

Odometry Using Point and Line Features,” 2022 7th Int. Conf. Signal,
Image Process. (ICSIP), 2022, pp. 591–595, doi:

10.1109/ICSIP55141.2022.9886829.

[16] J. Li and A. Hamdulla, “A Research of Visual-Inertial Simultaneous

Localization and Mapping,” 2022 3rd Int. Conf. Pattern Recognit., Mach.

Learn. (PRML), 2022, pp. 143–150, doi:
10.1109/PRML56267.2022.9882205.

[17] J. Yuan, S. Zhu, K. Tang, and Q. Sun, “ORB-TEDM: An RGB-D SLAM

Approach Fusing ORB Triangulation Estimates and Depth

Measurements,” IEEE Trans. Instrum., Meas., Vol. 71, pp. 1–15, 2022,

doi: 10.1109/TIM.2022.3154800.

[18] J. Liu, X. Li, Y. Liu, and H. Chen, “RGB-D Inertial Odometry for a

Resource-Restricted Robot in Dynamic Environments,” IEEE Robot.,
Automat. Lett., Vol. 7, No. 4, pp. 9573–9580, Oct. 2022, doi:

10.1109/LRA.2022.3191193.

[19] R. Long et al., “RGB-D SLAM in Indoor Planar Environments with

Multiple Large Dynamic Objects,” IEEE Robot., Automat. Lett., Vol. 7,

No. 3, pp. 8209–8216, Jul. 2022, doi: 10.1109/LRA.2022.3186091.

[20] Y. Chen et al., “Submap-Based Indoor Navigation System for the Fetch

Robot,” IEEE Access, Vol. 8, pp. 81479–81491, Apr. 2020, doi:
10.1109/ACCESS.2020.2991465.

[21] K. Tian and K. Mirza, “Sensor Fusion for Octagon – an Indoor and

Outdoor Autonomous Mobile Robot,” 2022 IEEE Int. Syst. Conf.
(SysCon), 2022, pp. 1–5, doi: 10.1109/SysCon53536.2022.9773827.

[22] C. Li, S. Wang, Y. Zhuang, and F. Yan, “Deep Sensor Fusion Between

2D Laser Scanner and IMU for Mobile Robot Localization,” IEEE Sens.

J., Vol. 21, No. 6, pp. 8501–8509, Mar. 2021, doi:

10.1109/JSEN.2019.2910826.

[23] N. Zimmerman et al., “Robust Onboard Localization in Changing

Environments Exploiting Text Spotting,” 2022 IEEE/RSJ Int. Conf. Intell.
Robots, Syst. (IROS), 2022, pp. 917–924, doi:

10.1109/IROS47612.2022.9981049.

[24] B. Kaleci, K. Turgut, and H. Dutagaci, “2DLaserNet: A Deep Learning

Architecture on 2D Laser Scans for Semantic Classification of Mobile

Robot Locations,” Eng. Sci., Technol. Int. J., Vol. 28, pp. 1-13, Apr. 2022,
doi: 10.1016/j.jestch.2021.06.007.

[25] G. Spampinato, A. Bruna, I. Guarneri, and D. Giacalone, “Deep Learning

Localization with 2D Range Scanner,” 2021 7th Int. Conf. Automat.

Robot., Appl. (ICARA), 2021, pp. 206–210, doi:

10.1109/ICARA51699.2021.9376424.

[26] H. Kuang et al., “IR-MCL: Implicit Representation-Based Online Global

Localization,” IEEE Robot., Automat. Lett., Vol. 8, No. 3, pp. 1627–1634,
Mar. 2023, doi: 10.1109/LRA.2023.3239318.

EN-174

