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ABSTRACT — This paper explains the increase in localization system accuracy of the adaptive Monte Carlo localization 

(AMCL) in robots utilizing a convolutional neural network (CNN). The localization system in robots is defined as the 

position recognition process of robots within their working environment. This system is essential as it allows robots to 

navigate and map efficiently and accurately. Without appropriate localization, robots cannot operate effectively and can 

encounter troubles such as losing direction or bumping into objects. AMCL is a popular localization system and is widely 

applied in robots. This method utilizes the changes in the robots’ position and light detection and ranging (LiDAR) sensor 

reading as input. Reading of robot position changes is susceptible to error due to slips or wheel deformations. The inaccuracy 

of reading the robots’ position change results in the inaccuracy of the robots’ position prediction by AMCL, so improvements 

are required. Novelty in this paper includes providing compensation values from AMCL results for the error to be small. 

These compensation values were obtained from the CNN training results; hence, the proposed method was dubbed 

AMCL+CNN. Inputs given to the CNN were the changes in wheel odometry values and distance reading by the LiDAR 

sensor. CNN outputs were compared to the target data in the form of the robots’ actual position from observation results. 

Network training was conducted for as many as 200 epochs to achieve the lowest validation loss. Testing was done on a 

robot installed with a robot operating system (ROS). Training and testing datasets were obtained from rosbag data when the 

robot traversed the testing area. In straight and turn scenarios, obtained AMCL+CNN algorithms had fewer errors than the 

regular AMCL and Monte Carlo localization (MCL). Results obtained are also superior in terms of positional error metrics 

when compared to several other comparison methods. 

KATA KUNCI — Robot Localization, LiDAR, AMCL, CNN. 

I. INTRODUCTION 

Mobile robots have been utilized in some sectors like 

agriculture [1], health [2], hospitality [3], and tourism [4]. In 

doing the work, robots have equipment installed, such as 

grippers [5], tanks on the AGV robot [6], and health 

measurement equipment to measure persons’ vital signs [7]–

[9]. Robots must perceive their actual position to work 

correctly. If not, they cannot work as per previously given plans 

or works [10]. This process is commonly dubbed robot 

localization. 

To support localization systems indoors, generally, robots 

use 2D LiDAR scanner sensors [10]-[12]. Those sensors have 

a pretty good ranging capability in all directions (360°). With 

rapid development in robotics, 3D LiDAR sensors have 

become prevalently employed [13], [14]. The ranging 

capability of 3D LiDAR is better than that of 2D LiDAR, but 

its price in markets is rather high. Visual-based sensors, such 

as RGB camera, has the ability to recognize features around 

robots [15], [16]. However, the RGB camera’s ranging 

capability is not as good as that of LiDAR, so this sensor still 

needs to be paired with other sensors. In addition, feature 

recognition cannot work optimally in featureless environments. 

Other visual-based sensors, such as RGB-D cameras, have 

ranging capabilities based on depth [17]–[19]. However, its 

range is limited to around 87° in the horizontal direction. 

The localization system is one of the essential stages in 

robotic research as it is the basis for the navigation system and 

map building [20]. The accuracy and efficiency of the 

localization system play a crucial role in the robots’ 

performance when carrying out their work. Therefore, it is 

necessary to conduct research on improving the accuracy of 

measurement and efficiency. The efficiency in question is 

computational efficiency and cost efficiency. An increase in 

performance can be carried out using good-quality sensors or a 

combination of several sensors or sensor fusion [4], [21], [22].  

One frequently used localization method is the particle 

filter-based method, namely the Monte Carlo localization 

(MCL). Despite its need-to-be-addressed shortcomings, this 

method can effectively predict the robots’ location. MCL 

requires numerous accurate and up-to-date sensor data and 

environmental information to generate an accurate estimation. 

If sensor data are unavailable or inaccurate, the MCL results 

will be very unsatisfactory. Furthermore, this method is 

extremely sensitive to environmental changes, for example, 

layout modifications or new object additions. It implies that the 

algorithm must be regularly updated to guarantee accurate 

results. MCL also necessitates longer computation and time to 

compute an accurate location probability, which may lead to a 

delay in robot responses. Therefore, it is essential to find an 

alternate solution to resolve these shortcomings in the MCL 

implementation to the robots. 

An adaptive MCL (AMCL) is another variation of the MCL 

algorithms used to determine the position and heading of robots 

in an unknown environment. The AMCL combines the Kalman 

filter and MCL to adjust the particle distribution and reduce the 

required number of particles to achieve the same accuracy. It 

adapts the required number of particles in response to changing 

environmental conditions. This way enables AMCL to 

optimize the particles needed and increase efficiency. 

Generally, AMCL is used to ascertain the robots’ position and 

heading in an unknown environment more rapidly and 

accurately than the regular MCL. The AMCL combines the 

MCL technique and the Kalman filter to improve the accuracy 

and robustness of the robots’ position estimation. Nevertheless, 
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both algorithms are still affected by error potentials during the 

motion update process. This motion update is derived from 

reading changes in the robots’ position based on sensor data of 

wheel odometry. The most common error that occurred is 

induced by wheel slips and deformations. 

Technique on robot localization using 2D LiDAR has been 

conducted [23]. This technique employed LiDAR-based 

localization with an occupancy grid map combined with a 

camera. This camera functioned to read texts placed around the 

robots’ working area. In the indoor localization, the results 

were pretty good. Another technique used in robot localization 

was 2DLaserNet [24]. This technique employed a 

convolutional neural network (CNN) to identify rooms, 

corridors, and doors in the robot’s working area. Identification 

was carried out based on the reading of 2D LiDAR. A 2D 

LiDAR with neuron networks has also been used [25]. 

The accuracy of reading AMCL can also be increased using 

implicit representation-based Monte Carlo localization (IR-

MCL) [26]. This technique performs position estimation based 

on 2D LiDAR data. The robot’s working environment was 

represented in the form of a neural occupancy field (NOF) 

created using an artificial neural network (ANN). NOF was 

generated using a 2D LiDAR scan as input, with the output 

being the occupancy map’s probability of suitability. This 

technique can generate a more accurate estimate of the robot’s 

position and heading. The robot localization system using 

machine learning has several advantages compared to the 

AMCL method. Machine learning systems have the ability to 

automatically learn and adapt to their environment, enabling 

them to generate more accurate location estimates in changing 

environments. 

This paper proposes to increase the accuracy of the AMCL 

localization system using CNN. In the proposed method, CNN 

functioned to predict possible errors arising in the robot’s 

position and heading. The resulting error prediction value was 

used to compensate for the AMCL output on the x-axis and y-

axis positions and the z-axis (yaw) rotation. If the accuracy of 

the robot’s position increases, the overall performance of the 

robot improves. The proposed method was run on a robot 

equipped with a robot operating system (ROS). 

The following sections of this paper describe the research 

methodology and result obtained. Section II covers the research 

methodology that have been carried out, starting from robot 

design, CNN design, testing, and evaluation metrics. Part III 

discusses the results of the tests that have been done and Part 

IV shows the conclusions based on the test results. 

II. METHODOLOGY 

In this section, steps to achieve the desired objectives are 

explained. The first step involved the preparation of the mobile 

robot that had ROS installed. After that, the ROS node was 

prepared to support the system to be built. On the basis of the 

LiDAR scan and wheel odometry inputs, an artificial neuron 

network with CNN architecture was made to determine the 

number of optimal particles. Once the robot, ROS framework, 

and CNN model were ready, datasets for the training process 

were collected. These datasets were in the form of rosbag files, 

from which sensor reading data were extracted offline. The 

training proses was conducted based on these extracted data. 

After the optimal model was obtained, it was then implemented 

to the robot localization system that had been built. The optimal 

value was measured based on the lower error pose values and 

error heading than the regular MCL and default AMCL in ROS. 

The process of the proposed method is exhibited in Figure 1.  

The addition of an inertial measurement unit (IMU) sensor and 

wheel odometry to the LiDAR sensor used distinguishes the 

proposed method from several prior methods [24], [25]. 

A. HARDWARE DESIGN OF THE MOBILE ROBOT 

The mobile robot used was built with a differential drive 

mobile robot configuration. It was made with a length of 300 

mm, a width of 200 mm, and a height of 100 mm. The wheels 

had a diameter of 65 mm and were attached at the back. The 

 

Figure 1. Block diagram of the proposed robot localization. 
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distance between the wheels was 250 mm. Castor wheels were 

attached at the front with a distance of 170 mm to the rear axle. 

A 2D LiDAR sensor was installed above the castor to support 

the localization system. The robot used is shown in Figure 2.  

The robot made had several supporting electronic devices 

whose connections between components are shown in Figure 3. 

NVIDIA Jetson Nano was used as the central processor in 

which ROS was installed. The general-purpose input-output 

(GPIO) pin on the Jetson Nano was connected to an IMU 

BNO055 sensor. The two devices were connected by inter-

integrated circuit (I2C) communication. The IMU sensor was 

connected to the ROS system using the /imu_node node, which 

generated the /imu_data topics. In order to control actuators, 

Arduino Uno was connected to NVIDIA Jetson Nano using 

universal serial bus (USB) communication. In ROS, the 

communication was done using the rosserial_arduino 

(/serial_node) node. Arduino was responsible for regulating the 

speed of the DC motor in accordance with the Jetson Nano via 

topic /cmd_vel commands. The pulse width modulation (PWM) 

signal from the Arduino was connected to the L298 motor 

driver so that the motor speed could vary. When the motor 

rotated, the rotary encoder sensor sent pulses to the Arduino 

pins, which were then processed into speed data (/left_speed 

and /right_speed) and the number of wheel rotations (/left_ticks 

and /right_tick topics). 

B. ROS FRAMEWORK DESIGN 

ROS is a meta-operating system run on the robot made. It 

has several interconnected nodes to support the robot’s 

performance. Using topics, each node can be connected to other 

nodes. Topics comprise messages containing data on sensor 

reading, the robot’s position, and so on. This research used 

several default nodes or default ROS, namely /rpLiDAR_node, 

/AMCL, /movebase, and /SLAM_gmapping. In addition to 

default nodes, other nodes to support the robot’s performance 

were also created, including /ekf_odom_pub, which functioned 

to run the extended Kalman filter (EKF). Then, /datalogger 

node functioned to extract sensor data previously stored in the 

rosbag. 

The /rpLiDAR_node node is one of the essential nodes in 

the ROS-based robot navigation system. RPLIDAR is a 2D 

LiDAR sensor that uses laser beams to measure the distance 

and angle of surrounding objects. In ROS, the /rpLiDAR_node 

node functions to read data from the RPLIDAR sensor and 

generates /scan topics later used by other nodes in ROS. The 

/scan topics generated by the RPLIDAR node contain each 

point’s angle and distance data around the LiDAR sensor. 

These data are accessible by reading /scan topics on the child 

msg.ranges[0-719], of which a value of 0-719 represents a  0.5° 

increase in each angle. These data are then represented in the 

form of arrays so that they can be utilized for environmental 

mapping or robot navigation autonomously. Moreover, data 

from /scan topics can be used to prevent the robot from 

colliding with nearby obstacles or objects. Users can utilize the 

ROS package provided by the RPLIDAR producer to run the 

/rpLiDAR_node node. Once it operates, the /rpLiDAR_node 

node will perpetually read data from the sensor and periodically 

generate /scan topics as per predetermined frequencies. It 

enables the robot to continuously update information on its 

surroundings and make precise decisions when navigating. 

The subsequent node is the /ekf_odom_pub node, which 

operated EKF on ROS. EKF can be used to fuse data from the 

rotary encoder and IMU sensors. The combination of the two 

sensors aims to improve the odometry system of the robot. The 

rotary encoder on the wheel was used to measure the distance 

traveled by the robot linearly. In contrast, the IMU was used to 

measure the acceleration and angular velocity of the robot. The 

data from these two sensors were combined using the EKF 

filter to estimate the position and heading of the robot more 

accurately. In this node, several parameters needed to be set, 

including the diameter of the wheels used, the distance between 

the wheels or the wheelbase, and the number of encoder pulses 

when the robot moved one meter.  

The SLAM gmapping algorithm was used to obtain the 

occupancy grid map of the room. The SLAM gmapping process 

was initiated by subscribing data from the LiDAR sensor and 

robot position (from /ekf_odom_pub topics). Then, the sensor 

data were converted into a gridmap by placing each particle 

scan of the LiDAR sensor on a grid that corresponded to the 

robot’s current position. The grid was then updated to reflect 

each newly received scan. Subsequently, the grid was matched 

with the results of the previous scan. It was used to determine 

the most probable transformation between the two scans when 

updating the robot’s position. Furthermore, the map grid data 

were converted into an occupancy grid which stated the 

 

Figure 2. Visual form of the robot used. 

 

Figure 3. Block diagram of the connection between the components. 

 

 

Figure 4. Results of the occupancy grid map from SLAM gmapping. 
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probability of whether the room in the grid was occupied. After 

the map was created, gmapping published the resulting map via 

the appropriate ROS topics so that it could be used by other 

nodes in the system. The occupancy grid map results are shown 

in Figure 4. 

The /AMCL node operated by acquiring data from the 

LiDAR sensor and the occupancy grid map, then generating the 

robot’s poses (position and heading) within the environment. 

The /AMCL node required data from the LiDAR sensor and the 

occupancy grid map to generate robot poses. Data from the 

LiDAR sensor were used to detect objects and walls around the 

robot, while the occupancy grid map was used as a reference to 

determine the robot’s position.  Following the collection of the 

LiDAR sensor and the occupancy grid map, the /AMCL node 

processed the data to produce the robot poses. The poses were 

generated in the form /AMCL_pose, which could be used to 

navigate the robot autonomously. 

C. ROSBAG DATASET COLLECTION 

After the entire nodes were connected, the process 

proceeded by retrieving the dataset in the form of a rosbag file. 

Rosbag is a built-in tool in ROS (default tools) used to record 

topic data in a file. It was first necessary to determine the topics 

to be recorded and how long the recording would take to record 

data using a rosbag. Then, the recording was started by running 

the “rosbag record” command and providing a file name to 

store the recording data. Once the recording was complete, the 

rosbag file could be used to play back the recording using the 

“rosbag play” command. 

The dataset was collected using scenario by running the 

robot from the start position or point P1 to point P2. Next, the 

robot rotated 90° counterclockwise in place. Then, the robot 

was moved to point P3 and rotated 90° counterclockwise. The 

position of these points in the test area is shown in Figure 5. In 

this scenario, the robot was moved in straight and turn positions, 

each of which was carried out twice. Therefore, from this 

scenario, the robot data would be obtained when the robot 

moved straight and turned. These data served as a reference for 

the accuracy of the proposed algorithm. Each scenario was run 

four times and stored in a different rosbag, resulting in four 

rosbags that were extracted into training and testing datasets. 

D. ROSBAG EXTRACTION FOR TRAINING DATASETS 

Collecting training datasets is a crucial step in creating a 

quality machine-learning model. This CNN machine learning 

used training and testing datasets in text form of CSV format. 

Meanwhile, from ROS, datasets were stored in a rosbag form, 

hence a rosbag to CSV conversion was needed for the training 

and testing datasets could be used. Based on these needs, a node 

/datalogger was created. The node converted the rosbag into a 

CSV file, beginning from the start until the robot finished 

pivoting 90° at point P3. The stored data were in from of 

/AMCL_pose, /odom_combined, and /scan topics. The 

connection between nodes when running this process is shown 

in Figure 6. 

The /AMCL_pose topics were served as a reference or 

comparative data after the correction process with CNN was 

complete. The /odom_combined topics were used to determine 

the robot’s movement within a particular sampling time. These 

topics contained robot position and heading data based on the 

EKF process from the wheel odometry and IMU sensors. By 

comparing values at the current time (t) with the previous time 

(t-1), the robot’s displacement value can be determined. In the 

training dataset created, the data stored were only the robot’s 

displacement with respect to the x-axis, y-axis, and angular 

displacement with respect to the z-axis or yaw. As a result, in 

this training dataset, the robot’s displacement value required 

three columns of data. The displacement equations are 

expressed in (1) to (3), where the OC(s,t) value is the topic 

value of /odom_combined on the s-axis. The notation s in the 

equation denotes the linear odom axis when written using 

lowercase letters, while the capital letters denote the angular 

axis. 

The /scan topics were necessitated to find the difference in 

the values of the distance readings for each time sample. The 

difference in values that appears can represent the movement 

of the robot in the x-axis and y-axis. These difference values 

were inputted into CNN input because they were expected to 

correct the robot displacement values obtained from 

/odom_combined. The total differences in scan values (Δscan) 

in the dataset were 720 data columns. The Δscan value can be 

calculated using (4). The Δscan value is the value of the 

difference between the readings of the LiDAR sensor distance, 

while n is the direction or angle of the LiDAR sensor reading 

with a value of 0-719. The value of n represents an increase for 

every 0.5°. The valscan value was obtained from reading the 

/scan topics in the msg.range[n] message, while t is the current 

time and t-1 is the previous sampling time. 

 Δ𝑜𝑑𝑜𝑚𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑂𝐶(𝑥, 𝑡) − 𝑂𝐶(𝑥, 𝑡 − 1) (1) 

 Δ𝑜𝑑𝑜𝑚𝑙𝑖𝑛𝑒𝑎𝑟(𝑦) = 𝑂𝐶(𝑦, 𝑡) − 𝑂𝐶(𝑦, 𝑡 − 1) (2) 

 Δ𝑜𝑑𝑜𝑚𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑧) = 𝑂𝐶(𝑍, 𝑡) − 𝑂𝐶(𝑍, 𝑡 − 1) (3) 

 Δ𝑠𝑐𝑎𝑛(𝑛) = 𝑣𝑎𝑙𝑠𝑐𝑎𝑛(𝑛, 𝑡) − 𝑣𝑎𝑙𝑠𝑐𝑎𝑛(𝑛, 𝑡 − 1). (4) 

The CNN architecture created was supervised-machine 

learning, so target data were needed. The target used was the 

difference between the position and the robot’s actual heading 

based on the direct observation results with the /AMCL_pose 

value obtained from the rosbag file. 

 

Figure 5. Rosbag robot workspace during rosbag collection. 

 

 

 
 

Figure 6. Connection between nodes when extracting a rosbag file. 
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E. DESIGN OF THE CNN ARCHITECTURE 

The proposed design of the CNN architecture was made 

using TensorFlow, involving several stages. The first stage was 

layer initialization which functioned to input training data into 

TensorFlow and created basic layers from CNN. Layer 

initialization is essential because it ensures that all data and 

layers used in the training process are available and ready to 

use. The next stage was to create a convolution layer that 

performed convolution operations on each part of the input data. 

The convolution layer makes capturing important features in 

the input data possible, which are then passed on to the next 

layer. 

After the convolution layer, a pooling layer was created to 

reduce the size of the feature map, making it easier to pass on 

to the next layer. The pooling process also helps reduce 

overfitting and speeds up the training process. Following the 

pooling process, a flattening layer process must be carried out, 

namely changing the pooling results into a longer array. The 

flattening layer process aims to prepare data before being 

forwarded to the fully connected layer. The number of nodes in 

this layer was 800 nodes. The final stage was to create a fully 

connected layer, which was the layer that performed the final 

classification and predicted the model output. This fully 

connected layer consisted of two hidden layers with a total of 

2,048 and 512 nodes, respectively. Meanwhile, the output layer 

consisted of three nodes, each generating error estimates on the 

linear x-axis and y-axis and the angular z-axis. The CNN 

architecture used is depicted in Figure 7. 

F. NETWORK TRAINING 

To obtain the optimal model, CNN created was given a 

dataset prepared to carry out the training process. The dataset 

was further divided into a training dataset and a validation 

dataset to measure the performance of the model during 

training. In the training used, the datasets for training were 75% 

of all datasets, while the remaining 25% were used for 

validation datasets. The test datasets, on the other hand, were 

datasets that were excluded from the training procedure. 

After the datasets were ready to be read in the training stage, 

the model was compiled using the Adam optimizer. Because 

the distribution of the datasets and targets ranged from -1 to 1, 

the activation function employed was tanh. The loss function 

and evaluation matrix used were the mean squared error (MSE). 

The learning rate used was 0.01, which was the default value 

of the Adam optimizer. The training process was carried out 

until the optimal weight was obtained. In this training, the 

weight is considered optimal if the lowest validation loss/MSE 

value is obtained. 

G. EVALUATION MATRIX 

It is necessary to calculate the robot’s total position error. 

The robot’s position was represented using the cartesian axes 

with an assumption that the value of z = 0 since the robot was 

on a flat surface. The total position error was calculated based 

on the difference in the robot’s target and position toward the 

x-axis and y-axis. This value was calculated using (5) and (7). 

 𝑃𝐸(𝑥, 𝑦) = √(𝐸𝑋)
2 + (𝐸𝑌)

2 (5) 

 𝐸𝑋 = 𝐴𝑐𝑡𝑋 − 𝑅𝑒𝑠𝑋 (6) 

 𝐸𝑌 = 𝐴𝑐𝑡𝑌 − 𝑅𝑒𝑠𝑌 (7) 

where PE(x,y) is the total position error in meters, EX is the error 

on the x-axis, EY is the error on the y-axis, ActX is the actual 

value of the robot on the x-axis, ActY is the actual value of the 

robot on the y-axis, and the ResX and ResY values are the results 

of the robot’s position from the algorithm being tested 

according to the axis in question. The algorithms tested include 

regular MCL, ROS built-in AMCL, and AMCL+CNN which 

are the proposed algorithms. 

Heading error shows the difference between the target 

heading and the actual heading. This heading was measured on 

the z-axis or the yaw of the robot. It was done because the robot 

was assumed to be on a flat surface. The heading error value 

was obtained using (8). 

 𝐻𝐸 = 𝐴𝑐𝑡𝑌𝐴𝑊 − 𝑅𝑒𝑠𝑌𝐴𝑊 (8) 

where HE denotes the heading error on the z-axis or yaw in 

degree (°), the ActYAW value is the actual yaw value from the 

observation, and the ResYAW value is the yaw value obtained 

from applying the algorithm tested. 

III.  RESULT AND DISCUSSION 

This section explains the testing results of the localization 

system applied to the robot. The testing began by creating an 

occupancy grid map and running the regular MCL localization 

algorithm with various particle numbers. The number of 

particles tested was 1,000 up to 5,000, with an interval of 1,000 

 

Figure 7. Proposed convolutional neural network architecture. 
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particles. It was then followed by the default AMCL algorithm 

with particle values ranging from 100 to 5,000. The last was 

testing the AMCL+CNN algorithm, which is the method 

proposed in this paper. In addition, the test results were also 

compared with that of earlier study that proposed IR-MCL [26]. 

Several testing were then compared to determine the average 

error level that occurred. The lower the error occurs, the more 

accurate or better the localization system. 

A. MAKING OF OCCUPANCY GRID MAP AND ROSBAG 

Prior to the localization system testing, the occupancy grid 

map of the operating area was created. This map was created 

using the SLAM gmapping algorithm. The SLAM gmapping 

worked by subscribing the LiDAR sensor data (from scan 

rpLiDAR topics) and robot poses (from ekf_odom_pub topics). 

The robot operated slowly to obtain a good map since there was 

slip potential at high speed. In this testing, the robot was 

operated at a speed of 0.1 m/s. 

During the process of creating the map, the robot was 

placed in the P1 position at the coordinate of (0,0). 

Subsequently, the robot was operated manually using the 

/teleop_twist_keyboard node. It was operated throughout every 

corner of the room that the LiDAR scan could reach. After 

completing this step, the map was saved using the /map_saver 

node. The resulting map is depicted in Figure 5. Once obtained, 

the map saved with /map_server was used for later testing. 

Rosbag recording was done by operating the robot in 

position P1. Before that, the “rosbag record” command must be 

executed first. Next, the robot was moved to point P2 and 

rotated 90° in place. The robot was then moved to the position 

of point P3, where it continued by spinning 90° in place. Next, 

the rosbag recording was stopped and continued with the 

rosbag storage command. Storage of the rosbag was carried out 

four times, with each test being named “A”, “B”, “C”, and “D.” 

B. TESTING WITH THE REGULAR MCL 

After the occupancy grid map was created, the map, as 

shown in Figure 5, was used to test the localization system. The 

test was carried out by running the stored rosbags. Each rosbag 

was played back and simultaneously ran the regular MCL 

algorithm. The /AMCL node from the default ROS was 

configured to use a fixed number of particles and disable 

particle updates in order to produce regular MCL. The number 

of particles used was 1,000 to 5,000, with an interval of 1,000 

particles, resulting in five variations in the number of particles, 

as presented in Table I. 

In testing with a straight scenario, 3,000 particles produced 

the smallest position error results of 0.0243 m in the straight 

scenario and 0.0139 m in the turn scenario. Meanwhile, the 

largest position error was generated by the number of 2,000 

particles, namely 0.0558 m in the straight scenario and 0.0826 

m in the turn scenario. However, the number of 2,000 particles 

produced the smallest heading error in the turn scenario, which 

was 7.79°. Whereas, in the straight scenario, the smallest 

heading error occurred when the number of particles was 1,000. 

According to the regular MCL testing, the error position 

average that occurred when the robot moved straight was 

0.0323 m. This error value was recorded when the robot moved 

from P1 to P2 and from P2 to P3. The error heading average 

that occurred in that scenario was 12.87°. The error position 

and heading values in the turn scenario were obtained when the 

robot turned pivotally on P2 and P3 by 90°. The position error 

when turning was 0.0304 m, and the heading error was 10.82°. 

C. TESTING WITH THE DEFAULT AMCL IN ROS 

During testing with default AMCL in ROS, the number of 

particles was set to 100 up to 5,000 particles. Data testing was 

carried out four times on different rosbag files. It was carried 

out in the same manner as regular MCL testing. However, this 

testing updated the number of particles in the /AMCL node. 

Table II presents the results of the default AMCL or default 

ROS testing. The average position error of the four rosbags was 

0.0297 m in the straight scenario and 0.023 m in the turn 

scenario, while the heading error was 12.25° in the straight 

scenario and 13.73° in the turn scenario. 

Based on these data, AMCL provides a better robot position 

value when compared to MCL. It is shown in Table II, as 

evidenced by the smaller average position error values. 

However, for heading errors, AMCL actually produced a 

higher error value when turning, whereas when going straight, 

the heading error value only dropped below 1°. The two data 

obtained from MCL and AMCL were corrected using the 

addition of CNN, and then compared to the data generated by 

AMCL+CNN. 

D. TESTING WITH THE AMCL+CNN 

The AMCL+CNN testing was carried out by correcting the 

AMCL output value to be close to the actual value based on 

previously trained data. The training process was performed 

using the model as described in subsections II.E and II.F. The 

dataset for training contained 200 data with 723 inputs and 3 

outputs. The CNN network training was carried out ten times 

with a maximum variation of epochs. The number of epochs 

tested ranged from 50 to 500 with 50 intervals. Throughout 

training, the validation loss value served as the reference metric 

observed. The smaller the validation loss value, the better the 

training results. The best results in this training were at a value 

of 200 epochs, resulting in a validation loss of 0.0148. 

The most optimal weight of the training was then tested on 

the testing dataset. This dataset had a total of 114 data with a 

total of 723 inputs and 3 outputs. The outputs in this test dataset 

were used as a reference for the robot’s position and heading. 

TABLE I 

POSITION AND HEADING ERROR OF THE REGULAR MCL  

Number 

of 

Particles 

Position Error (m) Heading Error (°) 

Straight Turn Straight Turn 

1000 0.0277 0.0236 12.49 12.28 

2000 0.0558 0.0826 13.98 7.79 

3000 0.0243 0.0139 12.60 11.45 

4000 0.0249 0.0164 12.62 10.80 

5000 0.0287 0.0155 12.68 11.79 

Average 0.0323 0.0304 12.87 10.82 

 

TABLE II 

POSITION AND HEADING ERROR OF THE DEFAULT AMCL IN ROS  

Rosbag 
Position Error (m) Heading Error (m) 

Straight Turn Straight Turn 

A 0.0262 0.0112 11.50 10.75 

B 0.0262 0.0106 11.50 10.41 

C 0.0229 0.0381 12.81 15.87 

D 0.0434 0.0322 13.18 17.90 

Average 0.0297 0.0230 12.25 13.73 
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The output of the AMCL+CNN algorithm represents the actual 

position and heading of the robot. Based on these two values, 

the position error and heading error values could be identified. 

Based on the comparative data that had been obtained, a 

comparison was made between the test data. From Table III and 

Table IV, it can be seen that the position error and heading error 

values for AMCL+CNN in the straight and turn scenarios are 

always smaller than the regular MCL and AMCL ROS. The 

results of the average position error of the four rosbags with the 

AMCL+CNN algorithm was 0.0219 m in the straight scenario 

and 0.0186 m in the turn scenario. In contrast, for the heading 

error, the straight scenario obtained a value of 7.95° and 8.76° 

for the turning scenario gets value. 

Additionally, the results of conducted research [26] were 

used. In this testing, the estimated position of the robot was 

tested using the Monte Carlo localization + exploiting text 

spotting (NMCL) and implicit representation-based MCL (IR-

MCL). Compared with these methods, the proposed method, 

AMCL+CNN, yielded the smallest position error, which was 

0.0202 m (the average of straight and turning scenarios). The 

NMCL algorithm in testing produced a position error value of 

0.1369 m, while the IR-MCL produced a position error of 

0.0687 [26]. However, the value of the heading error from 

AMCL+CNN is the biggest heading error, so it still has the 

potential for improvement. 

IV. CONCLUSION 

The improvement of the AMCL algorithm accuracy using 
CNN for robot in indoor conditions has been realized. By using 
AMCL+CNN instead of the default AMCL or regular MCL, 
the error levels were successfully reduced. In the going straight 
scenario, the resulting positional error downed to 0.022 m 
compared to the default AMCL or regular MCL with 0.0297 m 
and 0.0323 m, respectively. At the same time, the heading error 
when going straight dropped to 7.95° from the default AMCL 
value of 12.25° and the regular MCL value of 12.87°. In the 
turning scenario, the resulting position error dropped to 0.0186 
m compared to the default AMCL and regular MCL, which 
were 0.023 m and 0.0304 m, respectively. The heading error in 
the going straight scenario decreased to 8.76° compared to the 
default AMCL value of 13.73° and regular MCL value of 
10.58°. With a lower error value, the robot’s performance when 

running the navigation system or other work will be more 
optimal. The proposed method has a better positional error than 
the AMCL, NMCL, and IR-MCL methods. 
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