Reduksi Dimensi untuk Meningkatkan Kinerja Pengklasteran Perilaku Siswa pada Sistem e-Learning
Abstrak
Pandemi corona telah mengubah proses pembelajaran dari yang semula tatap muka secara langsung (offline) menjadi pembelajaran secara daring (online). Pembelajaran daring ini menyebabkan kesulitan dalam pemantauan perilaku siswa oleh guru karena berkurangnya interaksi secara langsung. Lebih dari itu, siswa seringkali merasa terisolasi sehingga jika dibiarkan, situasi ini akan menyebabkan kegagalan dalam prestasi belajarnya. Permasalahan ini mendorong banyak dilakukannya penelitian tentang pemodelan yang berkaitan dengan perilaku siswa. Namun, para peneliti sebelumnya tidak banyak yang fokus pada peningkatan kinerja model atau sistem yang dibangun, padahal kinerja model ini sangat berpengaruh terhadap kualitas hasil pemetaan perilaku siswa. Untuk itu, makalah ini berfokus pada peningkatan kinerja pengklasteran perilaku siswa ketika berinteraksi dengan sistem e-Learning. Peningkatan kinerja dilakukan dengan reduksi dimensi pada data siswa dengan Principal Component Analysis (PCA). Selanjutnya, dua teknik inisialisasi titik pusat klaster dieksplorasi untuk mendapatkan hasil yang optimal, yaitu: random dan K-means++. Untuk pengukuran kualitas klaster, makalah ini menggunakan silhouette index. Hasil pengujian menunjukkan bahwa klaster dengan kualitas tertinggi dicapai oleh penerapan PCA dengan tujuh komponen dan banyaknya klaster tiga sampai empat untuk semua teknik inisialisasi titik pusat. Klaster yang berkualitas ini dapat membantu guru dalam memonitor perilaku siswa pada pembelajaran secara daring.
Referensi
D. Evayanti (2020) “Efektivitas Pembelajaran Melalui Metode Daring (Online) dalam Masa Darurat Covid-19 – STIT Al-Kifayah Riau,” [Online], https://www.stit-alkifayahriau.ac.id/efektivitas-pembelajaran-melalui-metode-daring-online-dalam-masa-darurat-covid-19/, tanggal akses: 3-Feb-2021.
S.S. Kusumawardani dan S.A.I. Alfarozi, “Kajian Penggunaan Data Log Mahasiswa untuk Berbagai Permasalahan Analisis Pembelajaran,” J. Nas. Tek. Elektro dan Teknol. Inf., Vol. 9, No. 4, hal. 365–374, 2020.
A. Peña-Ayala, Educational Data Mining: Applications and Trends. Cham, Switzerland: Springer, 2014.
R. Cerezo, M. Sánchez-Santillán, M.P. Paule-Ruiz, dan J.C. Núñez, “Students’ LMS Interaction Patterns and Their Relationship with Achievement: A Case Study in Higher Education,” Comput. Educ., Vol. 96, hal. 42–54, Mei 2016.
B. Sen dan E. Ucar, “Evaluating the Achievements of Computer Engineering Department of Distance Education Students with Data Mining Methods,” Procedia Technol., Vol. 1, hal. 262–267, 2012.
L.S.R. Pedrozo danM. Rodriguez-Artacho, “A Cluster-based Analysis to Diagnose Students’ Learning Achievements,” 2013 IEEE Global Engineering Education Conference (EDUCON), 2013, hal. 1118–1123.
J.N. Purwaningsih dan Y. Suwarno, “Predicting Students Achievement Based on Motivation in Vocational School Using Data Mining Approach,” 2016 4th International Conference on Information and Communication Technology (ICoICT), 2016, hal. 1–5.
N. Buniyamin, U. bin Mat, dan P.M. Arshad, “Educational Data Mining for Prediction and Classification of Engineering Students Achievement,” 2015 IEEE 7th International Conference on Engineering Education (ICEED), 2015, hal. 49–53.
L. Rahman, N.A. Setiawan, dan A.E. Permanasari, “Feature Selection Methods in Improving Accuracy of Classifying Students’ Academic Performance,” 2017 2nd International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 2017, hal. 267–271.
A. Marwaha dan S. Ahuja, “A Review on Identifying Influencing Factors and Data Mining Techniques Best Suited for Analyzing Students’ Performance,” 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), 2017, hal. 373–378.
A.M. de Morais, J.M.F.R. Araujo, dan E.B. Costa, “Monitoring Student Performance Using Data Clustering and Predictive Modelling,” 2014 IEEE Front. Educ. Conf. Proc., 2014, hal. 1–8.
Z. Li, C. Shang, dan Q. Shen, “Fuzzy-Clustering Embedded Regression for Predicting Student Academic Performance,” 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016, hal. 344–351.
A.I. Adekitan dan E. Noma-Osaghae, “Data Mining Approach to Predicting the Performance of First Year Student in a University Using the Admission Requirements,” Educ. Inf. Technol., Vol. 24, No. 2, hal. 1527–1543, Mar. 2019.
A.I. Adekitan dan O. Salau, “The Impact of Engineering Students’ Performance in the First Three Years on Their Graduation Result Using Educational Data Mining,” Heliyon, Vol. 5, No. 2, hal. 1-21, Feb. 2019.
A.B. El Din Ahmed dan I. Elaraby, “Data Mining: A Prediction for Student’s Performance Using Classification Method,” World J. Comput. Appl. Technol., Vol. 2, No. 2, hal. 43–47, 2014.
L. Juhaňák, J. Zounek, dan L. Rohlíková, “Using Process Mining to Analyze Students’ Quiz-Taking Behavior Patterns in a Learning Management System,” Comput. Human Behav., Vol. 92, hal. 496-506, Des. 2017.
Y. Park, J.H. Yu, dan I.-H. Jo, “Clustering Blended Learning Courses by Online Behavior Data: A Case Study in a Korean Higher Education Institute,” Internet High. Educ., Vol. 29, hal. 1–11, Apr. 2016.
W. Jie, L. Hai-yan, C. Biao, dan Z. Yuan, “Application of Educational Data Mining on Analysis of Students’ Online Learning Behavior,” 2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017, hal. 1011–1015.
L. Jia, H.N.H. Cheng, S. Liu, W.-C. Chang, Y. Chen, dan J. Sun, “Integrating Clustering and Sequential Analysis to Explore Students’ Behaviors in an Online Chinese Reading Assessment System,” 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 2017, hal. 719–724.
M. Jovanovic, M. Vukicevic, M. Milovanovic, dan M. Minovic, “Using Data Mining on Student Behavior and Cognitive Style Data for Improving e-Learning Systems: A Case Study,” Int. J. Comput. Intell. Syst., Vol. 5, No. 3, hal. 597–610, Jun. 2012.
Y. Promdee, S. Kasemvilas, N. Phangsuk, dan R. Yodthasarn, “Predicting Persuasive Message for Changing Student’s Attitude Using Data Mining,” 2017 International Conference on Platform Technology and Service (PlatCon), 2017, hal. 1–5.
P. Provelengios dan G. Fesakis, “Educational Applications of Serious Games: The Case of the Game Food Force in Primary Education Students,” Proc. 5th Eur. Conf. Games Based Learn., 2011, hal. 476-485.
W.-C. Shih, “Mining Sequential Patterns to Explore Users’ Learning Behavior in a Visual Programming App,” 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 2018, hal. 126–129.
Y. Yamasari, S.M.S. Nugroho, R. Harimurti, dan M.H. Purnomo, “Improving the Cluster Validity on Student’s Psychomotor Domain Using Feature Selection,” 2018 International Conference on Information and Communications Technology, ICOIACT 2018, 2018, hal. 460–465.
Y. Yamasari, A. Qoiriah, H.P.A. Tjahyaningtijas, R.E. Putra, A. Prihanto, dan Asmunin, “Improving the Quality of the Clustering Process on Students’ Performance Using Feature Selection,” 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), 2020, hal. 454–458.
M. Anusha dan J.G.R. Sathiaseelan, “Feature Selection Using K-Means Genetic Algorithm for Multi-objective Optimization,” Procedia Computer Science, Vol. 57, hal. 1074–1080, 2015.
D. Ding, J. Li, H. Wang, dan Z. Liang, “Student Behavior Clustering Method Based on Campus Big Data,” 2017 13th International Conference on Computational Intelligence and Security (CIS), 2017, hal. 500–503.
N. Rochmawati, H.B. Hidayati, Y. Yamasari, W. Yustanti, L. Rakhmawati, H.P.A. Tjahyaningtijas, dan Y. Anistyasari, “Covid Symptom Severity Using Decision Tree,” in 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), 2020, hal. 1–5.
C.M. Bishop, Pattern Recognition and Machine Learning, New York, USA: Springer, 2006.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.