Adaptive Control of Neuro Fuzzy PID for Fixed Wing UAV Flight Stability

  • Erwhin Irmawan Sekolah Tinggi Teknologi Kedirgantaraan
  • Erwan Eko Prasetiyo Sekolah Tinggi Teknologi Kedirgantaraan
Keywords: UAV, Kendali Adaptif, Neuro Fuzzy, PID

Abstract

Unmanned Aerial Vehicle (UAV), especially fixed wing, are widely used to carry out various missions, namely civil and military missions. To support the implementation of this mission, it is necessary to develop an intelligent automatic control system (autopilot). In this paper, an autopilot system with adaptive neuro fuzzy PID control is developed to control lateral (pitch) and longitudinal (roll) motion, by taking advantage of PID, fuzzy, and neural network control. Therefore, robust controls which can handle non-linear conditions can be formed. This paper aims to determine the performance of adaptive control of neuro fuzzy PID controllers for longitudinal and lateral motion on UAV. The result shows that adaptive control of neuro fuzzy PID are able to control the lateral and longitudinal motion of the aircraft and able to compensate for interferences from environmental disturbances in flying condition, such as changes in direction and wind speed that causes changes in aircraft attitude. The control characteristics of neuro fuzzy PID adaptive control in lateral and longitudinal motion are relatively similar. Adaptive control of neuro fuzzy PID has better performance than fuzzy PID control, i.e., faster settling time and lower percentage of maximum overshoot.

References

K. Nonami, F. Kendoul, S. Suzuki, W. Wang, dan D. Nakazawa, Autonomous Flying Robots, Unmanned Aerial Vehicles and Micro Aerial Vehicles, New York, USA: Springer, 2010.

P.A. Manggala, “Purwarupa Air Data, Attitude, and Heading Reference System untuk Pesawat Terbang Tanpa Awak Sayap Tetap,” Skripsi, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2012.

S. Markin, “Multiple Simultaneous Specification Attitude Control of a Mini Flying-Wing Unmanned Aerial Vehicle,” Tesis, University of Toronto, Toronto, Canada, 2010.

A. Crasta dan S.A. Khan, “Effect of Angle of Incidence on Stability Derivatives of a Wing,” National Conference on Challenges in Research & Technology in the Coming Decades (CRT 2013), 2013, hal. 1-6.

W. Rui, Z. Zhou, dan S. Yanhang, “Robust Landing Control and Simulation for Flying Wing UAV,” IEEE Proceedings of the 26th Chinese Control Conference, 2007, hal. 26-31.

Y. Li, C. Chen, dan W. Chen, “Research on Longitudinal Control Algorithm for Flying Wing UAV Based on LQR Technology,” International Journal On Smart Sensing And Intelligent Systems, Vol. 6, No. 5, hal. 2155-2181, 2013.

D.R. Parhi, “A New Intelligent Motion Planning for Mobile Robot Navigation using Multiple Adaptive Neuro-Fuzzy Inference System, Applied Mathematics & Information Science, Vol. 8, No. 5, hal. 2527-2535, 2014.

E. Irmawan dan P. Mulyono, “Kendali Fuzzy-PID pada Sikap Longitudinal dan Sikap Lateral Pesawat Tanpa Awak Fixed Wing,” APPROACH: Jurnal Teknologi Penerbangan, Vol 2 No 2, hal. 1-7, 2018.

J.E. Sierra dan M.S. Peñas, “Modelling Engineering Systems Using Analytical and Neural Techniques: Hybridization,” Neurocomputing, Vol. 271, hal. 70-83, 2018.

F. Jiang, F. Pourpanah, dan Q. Hao, “Design, Implementation, and Evaluation of a Neural Network Based Quadcopter UAV System,” IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, hal. 2076-2085, 2019.

E. Pitowarno, Robotika Desain, Kontrol, dan Kecerdasan Buatan, Yogyakarta, Indonesia: Andi, 2006.

B. Fatkhurrozi, M.A. Muslim, dan R.S. Didik, “Penggunaan Artificial Neuro Fuzzy Inference Sistem (ANFIS) dalam Penentuan Status Aktivitas Gunung Merapi,” Jurnal EECCIS, Vol. 6, No. 2, hal. 113-118, 2012.

Z.Y. Zhao dan S. Isaka, “Fuzzy Gain Scheduling of PID Controller,” IEEE Transaction on System, Man and Cybernetics, Vol. 23, No. 5, hal. 1392-1398, 1993.

S. Skogestad, “Tuning for Smooth PID Control with Acceptable Disturbance Rejection,” Ind. Eng. Chem. Res., Vol. 45, No. 23, hal. 7817–7822, 2006.

Published
2020-02-05
How to Cite
Irmawan, E., & Eko Prasetiyo, E. (2020). Adaptive Control of Neuro Fuzzy PID for Fixed Wing UAV Flight Stability. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(1), 73-78. https://doi.org/10.22146/jnteti.v9i1.142
Section
Articles