Classification of Rice Diseases Using Leaf Image-Based Convolutional Neural Network (CNN)

  • Moh. Heri Susanto Informatics Engineering, Faculty of Science and Technology, State Islamic University of Maulana Malik Ibrahim, Malang, Jawa Timur 65144, Indonesia
  • Irwan Budi Santoso Informatics Engineering, Faculty of Science and Technology, State Islamic University of Maulana Malik Ibrahim, Malang, Jawa Timur 65144, Indonesia
  • Suhartono Informatics Engineering, Faculty of Science and Technology, State Islamic University of Maulana Malik Ibrahim, Malang, Jawa Timur 65144, Indonesia
  • Ahmad Fahmi Karami Informatics Engineering, Faculty of Science and Technology, State Islamic University of Maulana Malik Ibrahim, Malang, Jawa Timur 65144, Indonesia
Keywords: Rice Disease, Custom CNN Architecture, Leaf Image, Adam Optimization, Model Evaluation

Abstract

Rice diseases significantly impact agricultural productivity, making classification models essential for accurately distinguishing rice leaf diseases. Various classification models have been proposed for image-based rice disease classification; however, further performance improvement is still required. This study proposes the use of a convolutional neural network (CNN) to classify rice diseases based on leaf images. The dataset used in this study included leaf images categorized into four conditions: leaf blight, blast, tungro, and healthy. In the initial stage, data preprocessing was conducted, including resizing, augmentation, and normalization. Following preprocessing, a custom CNN architecture was developed, consisting of four convolutional layers, four pooling layers, and three fully connected layers. Each convolutional layer employed a 3 × 3 kernel with a stride of 1 and ReLU activation, while the pooling layers used max pooling with a 3 × 3 kernel and a stride of 2. Using a batch size of 32 and the Adam optimizer, the best test performance was achieved with 100 training epochs and a learning rate of 0.0002, resulting in a training accuracy of 0.9930, a loss of 0.0221, and a test accuracy of 0.9647. Model evaluation demonstrated a balanced performance across precision, recall, and F1 score, each achieving 0.9647, indicating highly effective classification without bias toward any specific class. These findings suggest that the simplified CNN model can deliver competitive classification performance without the need for complex architectures or additional enhancement techniques. The proposed CNN model outperformed existing CNN architectures, such as Inception-ResNet-V2, VGG-16, VGG-19, and Xception.

References

P.M. Giopany, “Penyakit hawar daun bakteri pada tanaman padi.” Distan. Access date: 15-Mar-2025. [Online]. Available: https://distan.bulelengkab.go.id/informasi/detail/artikel/55_penyakit-hawar-daun-bakteri-pada-tanaman-padi?

V. Silvana, “Mengenal penyakit blas pada tanaman padi.” Distan. Access date: 15-Mar-2025. [Online]. Available: https://distan.bulelengkab.go.id/informasi/detail/artikel/57_mengenal-penyakit-blas-pada-tanaman-padi?

S. Sipi and Subiadi, “Penyakit tungro dan keracunan Fe pada tanaman padi.” Access date: 15-Mar-2025. [Online]. Available: https://repository.pertanian.go.id/server/api/core/bitstreams/6eb9a1de-0c26-4d49-9534-203a469b8f24/content

S. Chaudhary and U. Kumar, “Automated detection and classification of rice crop diseases using advanced image processing and machine learning techniques,” Trait. Signal, vol. 41, no. 2, pp. 739–752, Apr. 2024, doi: 10.18280/ts.410216.

N. Sunandar and J. Sutopo, “Utilization of artificial neural network in rice plant disease classification using leaf image,” Int. J. Res. Sci. Eng., vol. 4, no. 2, pp. 1–10, Feb./Mar. 2024, doi: 10.55529/ijrise.42.1.10.

U.N. Oktaviana, R. Hendrawan, A.D.K. Annas, and G.W. Wicaksono, “Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih Resnet101,” J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 5, no. 6, pp. 1216–1222, Dec. 2021, doi: 10.29207/resti.v5i6.3607.

R.A. Saputra et al., “Rice leaf disease image classifications using KNN based on GLCM feature extraction,” in Int. Conf. Adv. Inf. Sci. Dev. (ICAISD), 2020, pp. 1–6, doi: 10.1088/1742-6596/1641/1/012080.

A.D.P. Alwy, M.S.N. Wahid, B.N.N. Ag, and M.M. Fakhri, “Klasifikasi penyakit pada padi dengan ekstraksi fitur LBP dan GLCM,” J. Deep Learn. Comput. Vis. Digit. Image Process., vol. 1, no. 1, pp. 1–10, Mar. 2023, doi: 10.61255/decoding.v1i1.51.

Rahmi and R.A. Saputra, “Klasifikasi Penyakit padi melalui citra daun menggunakan metode naive Bayes,” J. Inform. Tek. Elektro Terap., vol. 12, no. 2, pp. 885–892, Apr. 2024, doi: 10.23960/jitet.v12i2.4012.

A.K. Abasi et al., “Enhancing rice leaf disease classification: A customized convolutional neural network approach,” Sustainability, vol. 15, no. 20, Oct. 2023, Art. no 15039, doi: 10.3390/su152015039.

Krishnamoorthy N et al., “Rice leaf diseases prediction using deep neural networks with transfer learning,” Environ. Res., vol. 198, pp. 1–8, Jul. 2021, doi: 10.1016/j.envres.2021.111275.

I.W.S.E. Putra, A.Y. Wijaya, and R. Soelaiman, “Klasifikasi citra menggunakan convolutional neural network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, pp. 65–69, 2016, doi: 10.12962/j23373539.v5i1.15696.

R. Jain et al., “Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning,” Measurement, vol. 165, pp. 1–10, Dec. 2020, doi: 10.1016/j.measurement.2020.108046.

K. Azmi, S. Defit, and Sumijan, “Implementasi convolutional neural network (CNN) untuk klasifikasi batik tanah liat Sumatera Barat,” J. Unitek, vol. 16, no. 1, pp. 28–40, Jan.-Jun. 2023.

A. Batool and Y.-C. Byun, “A lightweight multi-path convolutional neural network architecture using optimal features selection for multiclass classification of brain tumor using magnetic resonance images,” Results Eng., vol. 25, pp. 1–15, Mar. 2025, doi: 10.1016/j.rineng.2025.104327.

S.S. Bhat, A. Ananth, and P.S. Venugopala, “Design and evolution of deep convolutional neural networks in image classification - A review,” Int. J. Integr. Eng., vol. 15, no. 1, pp. 213–225, May 2023, doi: 10.30880/ijie.2023.15.01.019.

I.B. Santoso and I.K.E. Purnama, “Epileptic EEG signal classification using convolutional neural networks based on optimum window length and FFT’s length,” in ICCCM '20, Proc. 8th Int. Conf. Comput. Commun. Manag., 2020, pp. 87–91, doi: 10.1145/3411174.3411179.

M.A. Rahman, M.R. Islam, M.A.H. Rafath, and S. Mhejabin, “CNN based COVID-19 detection from image processing,” J. ICT Res. Appl., vol. 17, no. 1, pp. 99–113, Apr. 2023, doi: 10.5614/itbj.ict.res.appl.2023.17.1.7.

A. Ghosh et al., “Fundamental concepts of convolutional neural network,” in Recent Trends and Advances in Artificial Intelligence and Internet of Things, Cham, Switzerland: Springer, 2019, pp. 519–567.

S.B. Shrestha, L. Zhu, and P. Sun, “Spikemax: Spike-based loss methods for classification,” 2020, arXiv: 2205.09845.

C.R. Rahman et al., “Identification and recognition of rice diseases and pests using convolutional neural networks,” Biosyst. Eng., vol. 194, pp. 112–120, Jun. 2020, doi: 10.1016/j.biosystemseng.2020.03.020.

Wardianto, Farikhin, and D.M.K. Nugraheni, “Analisis sentimen berbasis aspek ulasan pelanggan restoran menggunakan LSTM dengan ADAM optimizer,” JOINTECS (J. Inf. Technol. Comput. Sci.), vol. 8, no. 2, pp. 67–76, May 2023, doi: 10.31328/jointecs.v8i2.4737.

A. Bhattacharjee, A.A. Popov, A. Sarshar, and A. Sandu, “Improving the adaptive moment estimation (ADAM) stochastic optimizer through an implicit-explicit (IMEX) time-stepping approach,” 2024, arXiv: 2403.13704.

M.A. Islam et al., “An automated convolutional neural network based approach for paddy leaf disease detection,” Int. J. Adv. Comput. Sci. Appl. (IJACSA), vol. 12, no. 1, pp. 280–288, Jan. 2021, doi: 10.14569/IJACSA.2021.0120134.

S. Ghosal and K. Sarkar, “Rice leaf diseases classification using CNN with transfer learning,” in IEEE Calcutta Conf. (CALCON), 2020, pp. 230–236, doi: 10.1109/CALCON49167.2020.9106423.

A.A.J.V. Priyangka and I.M.S. Kumara, “Classification of rice plant diseases using the convolutional neural network method,” Lontar Komput, J. Ilm. Teknol. Inf., vol. 12, no. 2, pp. 123–129, Aug. 2021, doi: 10.24843/lkjiti.2021.v12.i02.p06.

A.R. Muslikh, D.R.I.M. Setiadi, and A.A. Ojugo, “Rice disease recognition using transfer learning Xception convolutional neural network,” J. Tek. Inform. (Jutif), vol. 4, no. 6, pp. 1535–1540, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1529.

Published
2025-08-25
How to Cite
Moh. Heri Susanto, Irwan Budi Santoso, Suhartono, & Ahmad Fahmi Karami. (2025). Classification of Rice Diseases Using Leaf Image-Based Convolutional Neural Network (CNN). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 14(3), 181-189. https://doi.org/10.22146/jnteti.v14i3.18791
Section
Articles