Penggunaan Struktur CSRR untuk Peningkatan Kinerja BPF Berbasis Substrate Integrated Waveguide
Abstract
Makalah ini mengeksplorasi pemanfaatan struktur complementary split ring resonator (CSRR) untuk meningkatkan kinerja bandpass filter (BPF) berbasis substrate integrated waveguide (SIW). BPF berbasis SIW yang didesain menggunakan material RO 4003C dengan nilai permitivitas 3,38 dan rugi-rugi dielektrik 0,0027, dibuat dalam bentuk empat persegi panjang dengan ukuran 37,5 mm (panjang) × 35 mm (lebar) × 1,52 mm (tinggi). BPF berbasis SIW terdiri atas permukaan SIW dengan ukuran 22,4 mm (panjang) × 35 mm (lebar) dan 28 via. Pada bagian permukaan SIW dibuat CSRR berbentuk persegi panjang berukuran 4 mm (panjang) × 4 mm (lebar). Untuk mengoptimalkan kinerja BPF berbasis SIW, 12 CSRR dikonfigurasi menjadi enam baris dan dua kolom. Berdasarkan hasil eksplorasi yang telah dilakukan, jarak antara baris dan kolom CSRR secara substansial memengaruhi kinerja BPF. Makin dekat jarak baris antar-CSRR, makin jauh pergeseran frekuensi kerja kedua BPF ke arah frekuensi rendah. Penambahan CSRR pada BPF berbasis SIW berhasil menurunkan nilai koefisien kopling dari 0,38 menjadi 0,28. Penambahan CSRR pada BPF berbasis SIW telah menyebabkan nilai koefisien transmisi (S21) menurun dari -2,32 dB menjadi -0,70 dB, yang berarti meningkatkan kinerja BPF sebesar 1,62 dB. Penambahan CSRR pada BPF berbasis SIW juga telah menurunkan nilai koefisien refleksi (S11) dari -4,56 dB menjadi -10,96 dB atau meningkatkan kinerja BPF sebesar 6,4 dB.
References
L. Wang et al., “A 28-GHz compact substrate-integrated waveguide bandpass filter with defected ground structure using TGV technology,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 13, no. 12, pp. 2008-2015, Dec. 2023, doi: 10.1109/TCPMT.2023.3333410.
D. Jiang et al., “Tunable microwave bandpass filters with complementary split ring resonator and liquid crystal materials,” IEEE Access, vol. 7, pp. 126265-126272, Jun. 2019, doi: 10.1109/ACCESS.2019.2924194.
M. Hu et al., “Diverse SRRs loaded millimeter-wav SIW antipodal linearly tapered slot filtenna with improved stopband,” IEEE Trans. Antennas Propag., vol. 69, no. 12, pp. 8902-8907, Dec. 2021, doi: 10.1109/TAP.2021.3090854.
A.R. Azad and A. Mohan, “Single- and dual-band bandpass filters using a single perturbed SIW circular cavity,” IEEE Microw. Wirel. Compon. Lett., vol. 29, no. 3, pp. 201-203, Mar. 2019, doi: 10.1109/LMWC.2019.2893379.
J. Haidi and A. Munir, “Incorporation of CSRRs for bandwidth enhancement of SIW bandpass filter,” in 2023 Photonics Electromagn. Res. Symp. (PIERS), 2023, pp. 992-996, doi: 10.1109/PIERS59004.2023.10221510.
N. Ismail, A. Latip, E.A.Z. Hamidi, and A. Munir, “Defected ground structure for characteristic enhancement of CSRR-based substrate integrated waveguide bpf,” in 2019 PhotonIcs Electromagn. Res. Symp. - Spring (PIERS-Spring), 2019, pp. 1557-1560, doi: 10.1109/PIERS-Spring46901.2019.9017506.
A. Latip, N. Ismail, O.T. Kurahman, and A. Munir, “Effect of DGS utilization on characteristics of square shaped CSRR-based SIW BPF,” in 2019 IEEE 5th Int. Conf. Wirel. Telemat. (ICWT), 2019, pp. 1-4, doi: 10.1109/ICWT47785.2019.8978219.
W. Fu et al., “Modeling and analysis of novel CSRRs-loaded dual-band bandpass SIW filters,” IEEE Trans. Circuits Syst. II, Express Br., vol. 68, no. 7, pp. 2352-2356, Jul. 2021, doi: 10.1109/TCSII.2021.3052574.
D. Li et al., “Compact tri-band SIW Bandpass filters with high selectivity and controllable center frequencies using perturbation structure,” IEEE Trans. Circuits Syst. II: Express Br., vol. 70, no. 11, pp. 4043-4047, Nov. 2023, doi: 10.1109/TCSII.2023.3281496.
S.K. Thapa et al., “X-band feedback type miniaturized oscillator design with low phase noise based on eighth mode SIW bandpass filter,” IEEE Microw. Wirel. Compon. Lett., vol. 31, no. 5, pp. 485-488, May 2021, doi: 10.1109/LMWC.2021.3064602.
Y. Zheng, H. Tian, and Y. Dong, “Miniaturized, wide stopband filter based on shielded capacitively loaded SIW resonators,” Chin. J. Electron., vol. 33, no. 2, pp. 456-462, Mar. 2024, doi: 10.23919/cje.2023.00.057.
C.M. Gutiérrez, J. Hinojosa, and A. Alvarez-Melcon, “A technique for the passband and stopband control of wideband band-pass substrate integrated waveguide (SIW) filters designed with elliptic stepped impedances,” AEU - Int. J. Electron. Commun., vol. 177, pp. 1–10, Apr. 2024, doi: 10.1016/j.aeue.2024.155172.
A. Gupta and A.A. Khan, “Substrate integrated waveguide bandpass filter with wide upper stopband,” AEU - Int. J. Electron. Commun., vol. 191, pp. 1–6, Feb. 2025, doi: 10.1016/j.aeue.2025.155663.
Al-Hasan et al., “Metamaterial inspired electromagnetic bandgap filter for ultra-wide stopband screening devices of electromagnetic interference,” Sci. Rep., vol. 13, no. 1, pp. 1–9, Aug. 2023, doi: 10.1038/s41598-023-40567-x.
S. Udhayanan and K. Shambavi, “Compact single notch UWB bandpass filter with metamaterial and SIW technique,” Prog. Electromagn. Res. Lett., vol. 117, pp. 41–46, Jan. 2024, doi: 10.2528/PIERL23113004.
A.-Q. Zhang, Y. Yi, and L. Liu, “A dual-wideband bandpass filter with independently designed cutoff frequencies,” IEEE Trans. Microw. Theory Tech., vol. 73, no. 1, pp. 631-640, Jan. 2025, doi: 10.1109/TMTT.2024.3417936.
J. Haidi and A. Munir, “Performance characteristics of SIW-based BPF with square-shaped CSRR incorporation,” in 2023 IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meet. (USNC-URSI), 2023, pp. 799-800, doi: 10.1109/USNC-URSI52151.2023.10238088.
H. Nusantara, A. Latip, Zulfi, and A. Munir, “Utilization of CSRR and DGS on wideband SIW bandpass filter,” in 2022 Int. Workshop Antenna Technol. (iWAT), 2022, pp. 261-264, doi: 10.1109/iWAT54881.2022.9811071.
A. Munir, A. Saputra, and H. Ludiyati, “Compact X-band SIW antenna with reduced size using CSRR incorporation,” in 2018 IEEE Int. RF Microw. Conf. (RFM), 2018, pp. 61-64, doi: 10.1109/RFM.2018.8846474.
A. Saputra, N. Ismail, M. Yunus, and A. Munir, “Miniaturization of 2.4GHz SIW antenna using complementary split ring resonator,” in 2018 12th Int. Conf. Telecommun. Syst. Serv. Appl. (TSSA), 2018, pp. 1-4, doi: 10.1109/TSSA.2018.8708822.
A.E. Yousfi, A. Lamkaddem, K.A. Abdalmalak, and D.S. Vargas, “A miniaturized triple-band and dual-polarized monopole antenna based on a CSRR perturbed ground plane,” IEEE Access., vol. 9, pp. 164292-164299, Dec. 2021, doi: 10.1109/ACCESS.2021.3134497.
H. Zhang, W. Kang, and W. Wu, “Miniaturized dual-band differential filter based on CSRR-loaded dual-mode SIW cavity,” IEEE Microw. Wirel. Compon. Lett., vol. 28, no. 10, pp. 897-899, Oct. 2018, doi: 10.1109/LMWC.2018.2867082.
A. Iqbal et al., “Multimode HMSIW-based bandpass filter with improved selectivity for fifth-generation (5G) RF front-ends,” Sensors, vol. 20, no. 24, pp. 1–15, Dec. 2020, doi: 10.3390/s20247320.
S. Saleh, W. Ismail, I.S.Z. Abidin, and M.H. Jamaluddin, “5G hairpin and interdigital bandpass filters,” Int. J. Integr. Eng., vol. 12, no. 6, pp. 71–79, Jul. 2020, doi: 10.30880/ijie.2020.12.06.009.
S.A. Shandal, “Design and implementation of a novel 5G hairpin bandpass filter with defected ground structure,” Int. J. Elect. Comput. Eng. Syst., vol. 16, no. 2, pp. 99–107, Jan. 2025, doi: 10.32985/ijeces.16.2.2.
S. Saleh, M.H. Jamaluddin, F. Razzaz, and S.M. Saeed, “Compact 5G nonuniform transmission line interdigital bandpass filter for 5G/UWB reconfigurable antenna,” Micromachines, vol. 13, no. 11, pp. 1–15, Nov. 2022, doi: 10.3390/mi13112013.
O.C. Massamba, F.M. Mbango, and D. Lilonga-Boyenga, “Four subbands from dual mismatched wideband bandpass filter for 5G/WAS/Wi-Fi/WiMAX/WLAN applications,” Int. J. RF Microw. Comput.-Aided Eng., vol. 2023, no. 1, pp. 1–13, Mar. 2023, doi: 10.1155/2023/4713995.
M.F. Alnahwi et al., “A low-cost microwave filter with improved passband and stopband characteristics using stub loaded multiple mode resonator for 5G mid-band applications,” Electronics., vol. 10, no. 4, pp. 1–15, Feb. 2021, doi: 10.3390/electronics10040450.
J. Wang, S. Yu, X. Yang, and X. Liu, “Bandpass filter for 5G sub-6 GHz bands,” Prog. Electromagn. Res. Lett., vol. 116, pp. 79–85, Jan. 2024, doi: 10.2528/PIERL23120301.
L. Nouri et al., “A simplified and efficient approach for designing microstrip bandpass filters: Applications in satellite and 5G communications,” AEU - Int. J. Electron. Commun., vol. 177, pp. 1–10, Apr. 2024, doi: 10.1016/j.aeue.2024.155189.
M. Boumalkha et al., “Design of highly efficient filtering power amplifier with a wideband response for sub-6 GHz 5G applications,” Results Eng., vol. 24, pp. 1–8, Dec. 2024, doi: 10.1016/j.rineng.2024.102905.
Y. Le et al., “A high-selective multiple-mode bandpass filter design, applicating in both millimeter-wave 5G and WiFi systems,” Microelectron. J., vol. 149, pp. 1–8, Jul. 2024, doi: 10.1016/j.mejo.2024.106250.
M. Kebe, B. Mohammad, and M. Sanduleanu, “Differential-to-differential and single-ended-to-differential bandpass filters for 5G applications,” AEU - Int. J. Electron. Commun., vol. 141, pp. 1–10, Nov. 2021, doi: 10.1016/j.aeue.2021.153977.
F. Kiouach, B. Aghoutane, and M.E. Ghzaoui, “Novel microstrip bandpass filter for 5G mm-wave wireless communications,” e-Prime - Adv. Elect. Eng. Electron. Energy, vol. 6, pp. 1–6, Dec. 2023, doi: 10.1016/j.prime.2023.100357.
D.M. Pozar, Microwave Engineering, 4th ed. Hokoben, NJ, USA: John Wiley & Sons, 2012.
B. Yin and Z. Lin, “A novel dual-band bandpass SIW filter loaded with modified dual-CSRRs and Z-shaped slot,” AEU - Int. J. Electron. Commun., vol. 121, pp. 1–7, Jul. 2020, doi: 10.1016/j.aeue.2020.153261.
L. Yang et al., “A novel wideband bandpass filter based on CSRR-loaded substrate integrated folded waveguide,” Int. J. RF Microw. Comput.-Aided Eng., vol. 30, no. 6, pp. 1–9, Feb. 2020, doi: 10.1002/mmce.22181.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.

1.png)

