A Machine Vision-Based Anthropometric System for Measuring Human Head Circumference
Abstract
This study aims to develop an automated anthropometric system based on machine vision, integrated into a medical cyber-physical system (MCPS), to measure human head circumference. Head circumference is a critical parameter in growth monitoring, particularly for detecting abnormalities such as microcephaly and macrocephaly, which can affect cognitive development and overall health. To address this challenge, the study proposed an anthropometric system that enabled automated, accurate, and contactless measurements, accessible in real-time by healthcare professionals. The system was designed using a machine vision approach, incorporating object detection technology and elliptical model-based perimeter estimation to determine head circumference noninvasively. A 1,920 × 1,080-pixel (1080p) camera operating at 30 fps with a 60° field of view was mounted on a three-axis motion mechanism driven by stepper motors to automatically capture frontal and side views of the head. The measurement process began with head detection and bounding box adjustment to obtain head width parameters. Euclidean distance was used for measurement, followed by elliptical geometry modeling to estimate head circumference. Experimental results showed the lowest error rate of 2.29% at a distance of 50 cm under 300 lux lighting conditions. Performance evaluation using a confusion matrix yielded an accuracy of 92.8%, precision of 100%, recall of 97.5%, and F score of 98.7%. The proposed system provides an effective solution for healthcare professionals to perform growth screening quickly, accurately, and safely. It also supports remote healthcare services, particularly in areas with limited access to medical facilities.
References
X.Y. Gan, H. Ibrahim, and D.A. Ramli, “A simple vision based anthropometric estimation system using webcam,” J. Phys., Conf. Ser., vol. 1529, no. 2, pp. 1–7, Jun. 2020, doi: 10.1088/1742-6596/1529/2/022067.
B.R. Lv et al., “Automatic measurement of scanned human body in fixed posture,” in 2010 IEEE 11th Int. Conf. Comput.-Aided Ind. Des. Concept. Des. 1, 2010, pp. 575–578, doi: 10.1109/CAIDCD.2010.5681284.
R.A. Ertürk and M.E. Karnaşak, “Anthropometric measurements with 2D images,” in Proc. 7th Int. Conf. Comput. Sci. Eng. UBMK 2022, 2022, pp. 1–6, doi: 10.1109/UBMK55850.2022.9919504.
N. Werghi, Y. Xiao, and J.P. Siebert, “A functional-based segmentation of human body scans in arbitrary postures,” IEEE Trans. Syst. Man Cybern. B (Cybern.), vol. 36, no. 1, pp. 153–165, Feb. 2006, doi: 10.1109/TSMCB.2005.854503.
P.R.M. Jones and M. Rioux, “Three-dimensional surface anthropometry: Applications to the human body,” Opt. Lasers Eng., vol. 28, no. 2, pp. 89–117, Sep. 1997, doi: 10.1016/S0143-8166(97)00006-7.
S.J. Oks et al., “Cyber-physical systems in the context of industry 4.0: A review, categorization and outlook,” Inf. Syst. Front. vol. 26, no. 5, pp. 1731–1772, Oct. 2024, doi: 10.1007/s10796-022-10252-x.
R. Shabariah, Farsida, and I. Parameswari, “Hubungan ukuran lingkar kepala dengan perkembangan anak usia 12-36 bulan berdasarkan skala denver development screening test-ii (DDST-II) di Posyandu RW 03 Mustika Jaya Bekasi Timur November 2016,” J. Kedokt. Kesehat., vol. 15, no. 1, Jan. 2019, doi: 10.24853/jkk.15.1.46-55.
H. Sahli et al., “Statistical analysis based on biometrie measures for fetal head anomaly characterization,” in 2018 IEEE 4th Middle East Conf. Biomed. Eng. (MECBME), 2018, pp. 237–242, doi: 10.1109/MECBME.2018.8402440.
X. Ju et al., “3D head shape analysis of suspected Zika infected infants,” in 2018 11th Int. Congr. Image Signal Process. BioMed. Eng. Inform. (CISP-BMEI), 2018, pp. 1–4, doi: 10.1109/CISP-BMEI.2018.8633125.
N. Kalantari and V.G. Motti, “zCare: Designing a mobile application to support caregivers of patients with congenital Zika syndrome,” in 2018 IEEE Int. Conf. Healthc. Inform. (ICHI), 2018, pp. 276–283, doi: 10.1109/ICHI.2018.00038.
R.A. Melita, S.B. Bhaskoro, and R. Subekti, “Pengendalian kamera berdasarkan deteksi posisi manusia bergerak jatuh berbasis multi sensor accelerometer dan gyroscope,” ELKOMIKA: J. Tek. Energi Elekt. Tek. Telekomun. Tek. Elektron., vol. 6, no. 2, pp. 259–273, May 2018, doi: 10.26760/elkomika.v6i2.259.
M. Kurzyński, P. Ryba, M. Markowski, and M. Woźniak, “Medical telemetry system for monitoring and localization of patients - Functional model and algorithms for biosignals processing,” Int. J. Electron. Telecommun., vol. 56, no. 4, pp. 445–450, Nov. 2010, doi: 10.2478/v10177-010-0060-x.
D. Škorvánková, A. Riečický, and M. Madaras, “Automatic estimation of anthropometric human body measurements,” 2021, arXiv:2112.11992.
A.B. Abadi et al., “Perhitungan indeks massa tubuh less contact berbasis computer vision dan regresi linear,” Matrik: J. Manaj. Tek. Inform. Rekayasa Komput., vol. 21, no. 3, pp. 629–638, Jul. 2022, doi: 10.30812/matrik.v21i3.1512.
C. Xiang, B. Liu, L. Zhao, and X. Zheng, “Three-dimension deep model for body mass index estimation from facial image sequences with different poses,” J. Vis. Commun. Image Represent., vol. 107, pp. 1–11, Mar. 2025, doi: 10.1016/j.jvcir.2024.104381.
B.A. Fimaskoro, S. Aulia, and D. Rimasa, “Identification of fencing athletes based on anthropometric measurements using mediapipe pose,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 13, no. 1, pp. 11–17, Feb. 2024, doi: 10.22146/jnteti.v13i1.8145.
K. Yan et al., “Face recognition based on convolution neural network,” in 2017 36th Chin. Control Conf. (CCC), 2017, pp. 4077–4081, doi: 10.23919/ChiCC.2017.8027997.
B. Strbac, M. Gostovic, Z. Lukac, and D. Samardzija, “YOLO multi-camera object detection and distance estimation,” in 2020 Zooming Innov. Consum. Technol. Conf. (ZINC), 2020, pp. 26–30, doi: 10.1109/ZINC50678.2020.9161805.
A. Hazarika, A. Vyas, M. Rahmati, and Y. Wang, “Multi-camera 3D object detection for autonomous driving using deep learning and self-attention mechanism,” IEEE Access, vol. 11, pp. 64608–64620, Jun. 2023, doi: 10.1109/ACCESS.2023.3288112.
S.B. Bhaskoro, S. Aminah, and K. Taqi, “Attendance system on moving objects through face recognition using MTCNN and CNN,” in 2021 3rd Int. Symp. Mater. Elect. Eng. Conf. (ISMEE), 2021, pp. 184–189, doi: 10.1109/ISMEE54273.2021.9774257.
N.-L. Dao, T. Deng, and J. Cai, “Fast and automatic body circular measurement based on a single kinect,” in Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA), 2014, pp. 1–4, doi: 10.1109/APSIPA.2014.7041571.
M. Chao, C. Kai, and Z. Zhiwei, “Research on tobacco foreign body detection device based on machine vision,” Trans. Inst. Meas. Control, vol. 42, no. 15, pp. 2857–2871, Nov. 2020, doi: 10.1177/0142331220929816.
S.B. Bhaskoro, E.A. Salsabillah, and A.F. Rifa’i, “Sistem identifikasi manusia bergerak jatuh berdasarkan ekstraksi suara dan citra,” JTRM (J. Teknol. Rekayasa Manufaktur), vol. 4, no. 2, pp. 101–116, Oct. 2022, doi: 10.48182/jtrm.v4i2.94.
S.B. Bhaskoro, H. Supriyanto, and S. Falah, “Sistem identifikasi jumlah produk berbasis pengolahan citra dengan algoritma YOLO pada proses pengepakan industri manufaktur,” JTRM (J. Teknol. Rekayasa Manufaktur), vol. 6, no. 1, pp. 13–28, Apr. 2024, doi: 10.48182/jtrm.v6i1.114.
Y. Liu, A. Sowmya, and H. Khamis, “Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression,” PLoS One, vol. 13, no. 4, pp. 1–22, Apr. 2018, doi: 10.1371/journal.pone.0195600.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.