Fuzzy Controller Application in the Electrical Stimulation Development for Accelerating Wound Healing
Abstract
Chronic wound healing remains a clinical challenge due to the limited capacity of conventional therapies to accelerate tissue regeneration. Electrical stimulation (ES) offers a promising therapeutic modality; however, open-loop ES cannot adaptively adjust therapy duration. This study developed a closed-loop ES system incorporating fuzzy controller to dynamically regulate stimulation duration based on wound progression. The method integrates an Atmega32-based ES platform, fuzzy controller algorithms, and preclinical testing on guinea pigs. The ES system operates at a frequency of 20 Hz, a pulse width of 250 µs, and an output voltage of 50 V. The fuzzy controller adjusts stimulation duration within a range of 15–45 minutes according to the difference between the actual and target wound areas, achieving an estimation error of 0.3%. Preclinical evaluations compared the therapeutic effectiveness of closed-loop ES, open-loop ES, and no-ES conditions. Wound-area reduction over seven days in the closed-loop group reached 64–67%, higher than the open-loop (44–50%) and no-therapy (47%) groups. Closed-loop therapy also produced the highest tissue-density outcomes (75–100%), exceeding those of the open-loop (50%) and no-therapy (25–50%) groups. The fuzzy-controlled closed-loop ES accelerated tissue regeneration by approximately 1.5–2 times compared to open-loop and no-therapy conditions. Effectiveness rankings showed the closed-loop system achieving the highest scores (0.90 and 1.00), outperforming the open-loop (0.61) and no-therapy (0.51) groups. These findings indicate that fuzzy-controlled closed-loop ES provides superior wound-healing performance compared to conventional approaches, offering a more adaptive and precise therapeutic strategy with potential for broader medical application.
References
H. Setiawan, H. Mukhlis, D.A. Wahyudi, and R. Damayanti, “Kualitas hidup ditinjau dari tingkat kecemasan pasien penderita ulkus diabetikum,” Maj. Kesehat. Indones., vol. 1, no. 2, pp. 33–38, Oct. 2020, doi: 10.47679/makein.20207.
S.B. Rajendran, K. Challen, K.L. Wright, and J.G. Hardy, “Electrical stimulation to enhance wound healing,” J. Funct. Biomater., vol. 12, no. 2, pp. 1–17, Jun. 2021, doi: 10.3390/jfb12020040.
Y. Wang, M. Rouabhia, and Z. Zhang, “Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis,” Biochim. Biophys. Acta (BBA) - Gen. Subj., vol. 1860, no. 7, pp. 1551–1559, Jul. 2016, doi: 10.1016/j.bbagen.2016.03.023.
K. Wang et al., “A platform to study the effects of electrical stimulation on immune cell activation during wound healing,” Adv. Biosyst., vol. 3, no. 10, pp. 1–8, Oct. 2019, doi: 10.1002/adbi.201900106.
M. Rodrigues, N. Kosaric, C.A. Bonham, and G.C. Gurtner, “Wound healing: A cellular perspective,” Physiol. Rev., vol. 99, no. 1, pp. 665–706, Jan. 2019, doi: 10.1152/physrev.00067.2017.
J.H. Tan et al., “Incorporating fuzzy logic into an adaptive negative pressure wound therapy device,” J. Telecommun. Electron. Comput. Eng., vol. 9, no. 4, pp. 85–89, Oct.-Dec. 2017.
H. Sattar et al., “Smart wound hydration monitoring using biosensors and fuzzy inference system,” Wirel. Commun. Mob. Comput., vol. 2019, no. 1, pp. 1–15, Dec. 2019, doi: 10.1155/2019/8059629.
M.F.N. Reimansyah, A. Triwiyatno, and B. Setiyono, “Perancangan kontrol fuzzy adaptif pada sistem kontrol kecepatan stasioner mesin bensin,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 3, no. 3, pp. 215–221, Aug. 2014.
A.N. Fajero, H. Haryanto, T. Sutojo, and E. Mulyanto, “Logika fuzzy untuk perilaku dinamis pada sistem crafting dalam game pembelajaran aritmatika,” J. Eksplora Inform., vol. 9, no. 2, pp. 154–162, Mar. 2020, doi: 10.30864/eksplora.v9i2.367.
K. Chrobak, G. Chrobak, and J.K. Kazak, “The use of common knowledge in fuzzy logic approach for vineyard site selection,” Remote Sens., vol. 12, no. 11, pp. 1–31, Jun. 2020, doi: 10.3390/rs12111775.
Y.K. Almusawi, M.R.H. Al-Sammarraie, and M.D. Shikara, “The effect of an electric current on human body the effect of an electric current on human body (A review),” Al-Esraa Univ. Coll. J. Med. Sci., vol. 4, no. 5, pp. 15–42, Sep. 2023, doi: 10.70080/2790-7937.1016.
M. Tirono, F.S. Hananto, and A. Abtokhi, “Pulse voltage electrical stimulation for bacterial inactivation and wound healing in mice with diabetes,” Avicenna J. Med. Biotechnol., vol. 14, no. 1, pp. 95–101, Jan.-Mar. 2021, doi: 10.18502/ajmb.v14i1.8175.
H.N. Asham, D.I. Elshahed, A.S. Abdelshafy, and A.G.F. El-Sayed, “Micro current versus trans cutaneous nerve stimulation in treatment of post herpetic neuralgia,” Med. J. Cairo Univ., vol. 91, no. 12, pp. 1487–1492, Dec. 2023, doi: 10.21608/mjcu.2024.342781.
J.F. Rizzo et al., “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Investig. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5355–5361, Dec. 2003, doi: 10.1167/iovs.02-0819.
M. Arora et al., “Electrical stimulation for treating pressure ulcers,” Cochrane Database Syst. Rev., vol. 2020, no. 1, pp. 1–99, Jan. 2020, doi: 10.1002/14651858.CD012196.pub2.
R.N. Ahmad, M. Facta, and I. Setiawan, “Topologi dan kajian kinerja multi konverter arus searah untuk multi generator-hidro mini,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 11, no. 4, pp. 305–313, Nov. 2022, doi: 10.22146/jnteti.v11i4.4343.
D.V.S. Reddy and S. Thangavel, “Review on power electronic boost converters,” Aust. J. Elect. Electron. Eng., vol. 18, no. 3, pp. 127–137, Jul. 2021, doi: 10.1080/1448837X.2021.1935091.
S. Sadaf et al., “A novel modified switched inductor boost converter with reduced switch voltage stress,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1275–1289, Feb. 2021, doi: 10.1109/TIE.2020.2970648.
M. L. Alghaythi et al., “A high step-up interleaved dc-dc converter with voltage multiplier and coupled inductors for renewable energy systems,” IEEE Access, vol. 8, pp. 123165–123174, Jul. 2020, doi: 10.1109/ACCESS.2020.3007137.
M.A. Elgenedy et al., “High-voltage pulse generator based on sequentially charged MMC-SMs operating in a voltage-boost mode,” IET Power Electron., vol. 12, no. 4, pp. 749–758, Apr. 2019, doi: 10.1049/iet-pel.2018.5438.
N. Fitri, “Penggunaan krim ekstrak batang dan daun suruhan (Peperomia pellucida L.H.B.K) dalam proses penyembuhan luka bakar pada tikus putih (Rattus norvegicus),” Biopendix, vol. 1, no. 2, pp. 198–208, Mar. 2015, doi: 10.30598/biopendixvol1issue2page198-208.
Fatimatuzahroh, N.K. Firani, and H. Kristianto, “Efektifitas ekstrak bunga cengkeh (Syzygium aromaticum) terhadap jumlah pembuluh darah kapiler pada proses penyembuhan luka insisi fase proliferasi,” Maj. Kesehat., vol. 2, no. 2, pp. 92–98, Apr. 2015.
A.S. Sidhu and V. Harbuzova, “Emerging technologies for the management of diabetic foot ulceration: A review,” Front. Clin. Diabetes Healthc., vol. 5, pp. 1–17, Nov. 2024, doi: 10.3389/fcdhc.2024.1440209.
M. A. Hays et al., “Towards optimizing single pulse electrical stimulation: High current intensity, short pulse width stimulation most effectively elicits evoked potentials,” Brain Stimul., vol. 16, no. 3, pp. 772–782, May/Jun. 2023, doi: 10.1016/j.brs.2023.04.023.
J. Vaidyanathan, “Electrical stimulation of neural tissues - The fundamentals,” in The Handbook of Neuromodulation. Hauppauge, NY, USA: Nova Science Publishers, Inc, 2022, pp. 199–244.
E.G. Wahyuni and A.S. Ramadhan, “Aplikasi diagnosis tingkatan pneumonia dan saran pengobatan dengan fuzzy Tsukamoto,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 8, no. 2, pp. 115–122, May 2019, doi: 10.22146/jnteti.v8i2.500.
S.E. Gardner, R.A. Frantz, and F.L. Schmidt, “Effect of electrical stimulation on chronic wound healing: A meta- analysis,” Wound Repair Regen., vol. 7, no. 6, pp. 495–503, Nov./Dec. 1999, doi: 10.1046/j.1524-475X.1999.00495.x.
G. Koel and P.E. Houghton, “Electrostimulation: current status, strength of evidence guidelines, and meta-analysis,” Adv. Wound Care, vol. 3, no. 2, pp. 118–126, Feb. 2014, doi: 10.1089/wound.2013.0448.
B. Girgis and J.A. Duarte, “High voltage monophasic pulsed current (HVMPC) for stage II-IV pressure ulcer healing. A systematic review and meta-analysis,” J. Tissue Viability, vol. 27, no. 4, pp. 274–284, Nov. 2018, doi: 10.1016/j.jtv.2018.08.003.
A. Zulbaran-Rojas et al., “Home-based electrical stimulation to accelerate wound healing—A double-blinded randomized control trial,” J. Diabetes Sci. Technol., vol. 17, no. 1, pp. 15–24, Jan. 2023, doi: 10.1177/19322968211035128.
M. Li et al., “Toward controlled electrical stimulation for wound healing based on a precision layered skin model,” ACS Appl. Bio Mater., vol. 3, no. 12, pp. 8901–8910, Nov. 2020, doi: 10.1021/acsabm.0c01190.
C. Han et al., “Accelerated skin wound healing using flexible photovoltaic-bioelectrode electrical stimulation,” Micromachines, vol. 13, no. 4, pp. 1–12, Apr. 2022, doi: 10.3390/mi130405.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.

1.png)

