Pencarian Aturan Asosiasi Semantic Web Untuk Obat Tradisional Indonesia

  • Ridowati Gunawan Universitas Gadjah Mada
  • Khabib Mustofa Universitas Gadjah Mada
Keywords: Association Rule Mining, Semantic Web, Obat Tradisional Indonesia

Abstract

Indonesia has more than 2000 types of plants that can be used for medicine. Indonesian traditional medicine called jamu utilizes various of medicinal plants. Since each medicinal plant has different efficacy, jamu also has different efficacy. Jamu can be used to cure certain type of diseases. Jamu that has same efficacy can be produced by many different companies and has different composition. In order to bring benefit for the consumer, knowledge about efficacy of medicinal plants, efficacy of jamu, and composition of jamu is needed. One way to gain knowledge about jamu, along with the entire composition, is to utilize association rule mining technique. If in general the technique only utilizes a single database, in this paper the data source is obtained from semantic web. The data in semantic web is stored in the form of RDF or OWL according to ontology jamu. Data in the form of RDF/OWL is converted into transaction data using library rrdf of R, and its results will be processed using Apriori, which is one of the algorithms in association rule. Results of Apriori algorithm produce association rules on the composition of the jamu along with the value of the support, confidence, and lift ratio. These results indicate the value of lift ratio > 1 which means medicinal plants depend on each other.

References

D. W. Wardani, S. H. Yustianti, U. Salamah, and O. P. Astirin, ―An Ontology of Indonesian Ethnomedicine,‖ in International Conference on Information, Communication Technology and System, 2014, pp. 47–52.

N. F. Noy and D. L. McGuinness, ―Ontology Development 101: A Guide to Creating Your First Ontology,‖ Stanford Knowl. Syst. Lab., p. 25, 2001.

M. Silalahi, D. E. Cahyani, D. I. Sensuse, and I. Budi, ―Developing Indonesian Medicinal Plant Ontology Using Socio-Technical Approach,‖ 2015, no. I4ct, pp. 39–43.

T. Kato, N. Maneerat, R. Varakulsiripunth, F. Engineering, and K. Mongkut, ―Ontology-based E-health System with Thai Herb Recommendation 1", Sendai National College of Technology , Sendai , Japan, vol. 1, 2009.

V. Ganesan, S. Waheeta Hopper, and G. BharatRam, ―Semantic Data Integration and Quering Using SWRL,‖ in Trends in Network and Communications, vol. 197, D. Wyld, DavidC. and Wozniak, Michal and Chaki, Nabendu and Meghanathan, Natarajan and Nagamalai, Ed. Springer Berlin Heidelberg, 2011, pp. 567–574.

R. Mohan. and G. Arumugam, ―Developing Indian medicinal plant ontology using OWL and SWRL,‖ in Second International Conference, ICDEM 2010, 2012, vol. 6411 LNCS, pp. 131–138.

R. Agrawal, T. Imieliński, and A. Swami, ―Mining association rules between sets of items in large databases,‖ ACM SIGMOD Rec., vol. 22, no. 2, pp. 207–216, 1993.

R. Agrawal and R. Srikant, ―Fast algorithms for mining association rules,‖ in Proceeding VLDB ’94 Proceedings of the 20th International Conference on Very Large Data Bases, 1994, vol. 1215, pp. 487–499.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Third edit. Waltham, MA, USA: Morgan Kaufmann, 2012.

J. Han, J. Pei, and Y. Yin, ―Mining Frequent Pattern without Candidate Generation,‖ in In: Proc. Conf. on the Management of Data (SIGMOD’00, Dallas, TX)., 2010, pp. 1–12.

D. Hunyadi, ―Performance comparison of apriori and FP-growth algorithms in generating association rules,‖ in ECC’11 Proceedings of the 5th European conference on European computing conference, 2011, pp. 376–381.

D. H. Yang, J. H. Kang, Y. B. Park, Y. J. Park, H. S. Oh, and S. B. Kim, ―Association Rule Mining and Network Analysis in Oriental Medicine,‖ PLoS One, vol. 8, no. 3, pp. 1–9, 2013.

F. M. Afendi, N. Ono, Y. Nakamura, K. Nakamura, L. K. Darusman, N. Kibinge, A. H. Morita, K. Tanaka, H. Horai, M. Altaf-Ul-Amin, and S. Kanaya, ―Data Mining Methods for Omics and Knowledge of Crude Medicinal Plants toward Big Data Biology.,‖ Comput. Struct. Biotechnol. J., vol. 4, no. 5, p. e201301010, 2013.

F. M. Afendi, N. Ono, Y. Nakamura, K. Nakamura, L. K. Darusman, N. Kibinge, A. H. Morita, K. Tanaka, H. Horai, M. Altaf-Ul-Amin, and S. Kanaya, ―Data Mining Methods for Omics and Knowledge of Crude Medicinal Plants Toward Big Data Biology,‖ Comput. Struct. Biotechnol. J., vol. 4, no. 5, pp. 1–14, 2013.

S. H. Wijaya, H. Husnawati, F. M. Afendi, I. Batubara, L. K. Darusman, M. Altaf-Ul-Amin, T. Sato, N. Ono, T. Sugiura, and S. Kanaya, ―Supervised clustering based on DPClusO: Prediction of plant-disease relations using Jamu formulas of KNApSAcK database,‖ Biomed Res. Int., vol. 2014, 2014.

V. Nebot and R. Berlanga, ―Finding association rules in semantic web data,‖ Knowledge-Based Syst., vol. 25, no. 1, pp. 51–62, 2012.

R. Ramezani and C. Engineering, ―SWApriori : A New Approach to Mining Association Rules from Semantic Web Data.‖

T. Anbutamilazhagan and M. . Selvaraj, ―A Novel Model for Mining Association Rules from Semantic Web Data,‖ Elysium J., vol. 1, no. 2, pp. 1–5, 2014.

K. J. Kochut and M. Janik, ―SPARQLeR: Extended Sparql for Semantic Association Discovery,‖ in Proceedings of the 4th European conference on The Semantic Web: Research and Applications - ESWC ’07, 2007, pp. 145–159.

A. S. H. Yazdi and M. Kahani, ―A Novel Model for Mining Association Rules from Semantic Web Data,‖ in Intelligent Systems (ICIS), 2014 Iranian, 2014, pp. 1 – 4.

A. Bellandi, B. Furletti, V. Grossi, and A. Romei, ―Ontology-Driven Association Rule Extraction : A Case Study,‖ Context. Ontol. Represent. Reason., 2007.

K. Chomboon, N. Kaoungku, K. Kerdprasop, and N. Kerdprasop, ―Data Mining in Semantic Web Data,‖ Int. J. Comput. Theory Eng., vol. 6, no. 6, pp. 6–9, 2014.

E. L. Willighagen, ―A short tutorial on rrdf,‖ 2012. [Online]. Available: http://cran.r-project.org/web/packages/rrdf/rrdf.pdf.

D. Y. Zhao, ―RDATAMING,‖ 2011. [Online]. Available: http://www.rdatamining.com/docs/association-rule-mining-with-r.

Y. Nakamura, H. Asahi, M. Altaf-Ul-Amin, K. Kurokawa, and S. Kanaya., ―KNApSAcK: A Comprehensive Species-Metabolite Relationship Database.‖ [Online]. Available: http://kanaya.naist.jp/jamu/top.jsp, tanggal akses: 30-Mar-2015.

Badan Pengawas Obat dan Makanan Indonesia, ―Produk Obat Tradisional.‖ [Online]. Available: http://ceknie.pom.go.id/, tanggal akses: 24-Jan-2016.

Badan Pengawas Obat dan Makanan Indonesia, ―Obat Bahan Alamai Indonesia.‖ [Online]. Available: http://www.pom.go.id/index.php/oai/, tanggal akses: 24-Jan-2016.

How to Cite
Ridowati Gunawan, & Khabib Mustofa. (1). Pencarian Aturan Asosiasi Semantic Web Untuk Obat Tradisional Indonesia. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 5(3), 192-200. Retrieved from https://journal.ugm.ac.id/v3/JNTETI/article/view/2934
Section
Articles