TF-Mini LiDAR Sensor Performance Analysis for Distance Measurement

  • Fardiansyah Nur Aziz Yogyakarta State University
  • Masduki Zakarijah Yogyakarta State University
Keywords: LiDAR, TF-Mini LiDAR, Distance Measurement, Digitization, Analysis, Performance

Abstract

The digitalization development is accelerating, making it possible to measure the distance without touching the objects. Light detection and ranging (LiDAR) sensors are widely available on the market as components for distance measurement. Numerous studies on LiDAR sensor application have been conducted, including research on automated guided vehicle (AGV) robots, quadcopters, and tropical vegetation mappings. Previous research focused on LiDAR sensor application but did not evaluate its precision and features in depth. There are possibilities that the components’ performances do not conform with the technical data standards. This study presents the performance testing results of a TF-Mini LiDAR sensor for distance measurement. This TF-Mini LiDAR sensor testing used an experimental method. The sensor performance was determined by the maximum distance reading, accuracy level, objects’ color effect, tilt, and material type of objects being read. The testing results showed the TF-Mini LiDAR sensor had an accuracy rate of 3.17% in the range of 0.3 m to 6 m and 3.27% in the range of 6 m to 12 m, with a maximum reading distance of 10 m. Blue and iron were the most readable hue and material, with an average error rate of 2.78% and 3.2%, respectively. The distance reading results on flat objects with a tilt between 10° and 80° (quadrant 1) exceeded the actual distance as objects’ angle tilt increased, with the yielded error average of 7%. The average inaccuracy for flat objects with a tilt between 100° and 170° (quadrant 2) was 2.75%. Additionally, the distance reading accuracy improved as the objects’ degree of tilt increased. Based on the testing results, the TF-Mini LiDAR sensor could measure distances more precisely when the detected item was between 0.5 m and 10 m away, has a non-light-absorbing color and material, and is in the straight state.

References

(2021) “Kemajuan Teknologi Menciptakan Tantangan Baru,” [Online], https://kilaskementerian.kontan.co.id/news/kemajuan-teknologi-menciptakan-tantangan-baru-1/, access date: 9-Dec-2021.

F. Puspasari, et al., “Sensor Ultrasonik HCSR04 Berbasis Arduino Due untuk Sistem Monitoring Ketinggian,” J. Fis., Apl., Vol. 15, No. 2, pp. 36–39, Jun. 2019.

A.A. Olayinka, A.A. Oluwadamilare, and A.F. Emmanuel, “Distance Measurement and Energy Conservation Using Arduino Nano and Ultrasonic Sensor,” Amer. J. Elect., Comput. Eng., Vol. 5, No. 2, pp. 40–44, Jul. 2021.

M. Jhonanda (2021) “Teknologi yang Tak Lekang oleh Waktu,” [Online], https://kumparan.com/marcellinojhonanda12/teknologi-yang-tak-lekang-oleh-waktu-1v1snGX7KYQ/full/, access date: 14-Dec-2021.

T.-H. Kim and T.-H. Park, “Placement Optimization of Multiple Lidar Sensors for Autonomous Vehicles,” IEEE Trans. Intell. Transport. Syst., Vol. 21, No. 5, pp. 2139−2145, May 2020.

E.E. Prasetiyo and W.F. Arum, “Analisis Perbandingan Kinerja Brushless Motor Menggunakan Metode Eksperimen,” J. Nas. Tek. Elekt., Teknol. Inf., Vol. 10, No. 1, pp. 71–76, Feb. 2021.

P. Denysyuk, V. Tesyluk, and I. Chorna, “Development of Mobile Robot Using LIDAR Technology Based on Arduino Controller,” 2018 XIV-th Int. Conf. Perspect. Technol., Methods in MEMS Des. (MEMSTECH), 2018, pp. 240−244.

J. Liu, Q. Sun, Z. Fan, and Y. Jia, “TOF Lidar Development in Autonomous Vehicle,” 2018 IEEE 3rd Optoelectron. Glob. Conf. (OGC), 2018, pp. 185−190.

I. Sunandar and D. Syarifudin, “LiDAR: Penginderaan Jauh Sensor Aktif dan Aplikasinya di Bidang Kehutanan,” J. Planologi Unpas, Vol. 1, No. 2, pp. 145–154, Jul. 2014.

M. Nurcholis, I.Q. Himawan, S.I. Wijayanti, and A. Darmaristianti, “Tropical Vegetation and Land Cover Mapping Using LiDAR,” Planta Tropika: J. Agro Sci., Vol. 7, No. 1, pp. 8–18, Feb. 2019.

S.A. Alamsyah and M. Rivai, “Implementasi Lidar sebagai Kontrol Ketinggian Quadcopter,” J. Tek. ITS, Vol. 8, No. 2, pp. A109–114, Jul. 2019.

S.S. Bolbhat, et al., “Intelligent Obstacle Avoiding AGV Using Vector Field Histogram and Supervisory Control,” J. Phys.: Conf. Ser., Vol. 1716, pp. 1−11, Dec. 2020.

R. Soleman and D.R. Pratama, “Rancang Bangun Alat Penentu Kapasitas AC pada Ruang Persegi dengan Sensor TF Mini Lidar Berbasis Arduino Uno,” Sinusoida, Vol. 22, No. 3, pp. 86–92, Jul. 2020.

D. Dermawan, P. Setiawan, A. Basukesti, and R.N. Muhammad, “Rancang Bangun Visual Docking Guidance System (VDGS) sebagai Pendeteksi Arah Gerak Longitudinal Pesawat pada Sistem Parkir Pesawat Terbang,” J. Aviat. Electron. Inf. Technol. Telecommun. Elect., Controls (AVITEC), Vol. 3, No. 2 pp. 167–179, Aug. 2021.

H. Rasyid, Penilaian Hasil Belajar. Bandung, Indonesia: CV Wacana Prima, 2008.

A. Arkundato, Alat Ukur dan Metode Pengukuran, 1st ed., South Tangerang, Indonesia: Universitas Terbuka, 2007.

M. Abdullah, Fisika Dasar 1, Bandung, Indonesia: ITB Press, 2016.

“TF Mini LiDAR Module Datasheet”, Benewake, Beijing, China.

Published
2022-08-25
How to Cite
Fardiansyah Nur Aziz, & Masduki Zakarijah. (2022). TF-Mini LiDAR Sensor Performance Analysis for Distance Measurement. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(3), 192-198. https://doi.org/10.22146/jnteti.v11i3.3814
Section
Articles