Monitoring and Controlling of IoT-Based Greenhouse Parameters With the MQTT Protocol
Abstract
Modernization in the agricultural sector is expected to have an effect on improving the quality, production quantity, and continuity of the agricultural product supply. Currently, many smart agricultures are developed in greenhouses. However, several greenhouse parameters must be considered to optimize plant growth. This study has created a monitoring and control system for several Internet of things (IoT)-based greenhouse parameters, allowing farmers to monitor and control the greenhouse anytime and anywhere. It can also improve the work efficiency of farmers in monitoring and controlling, especially if there are multiple greenhouses to be monitored or controlled. The greenhouse monitoring data may be viewed in real time and stored on servers, making it easier for farmers to evaluate greenhouses and crops. The monitored parameters were greenhouse temperature, greenhouse humidity, and light intensity in the greenhouse, while the controlled parameters were greenhouse temperature and greenhouse humidity, using exhaust fans. The process of transmitting the greenhouse parameter monitoring and controlling data was carried out using the message queue telemetry transport (MQTT) protocol. Data loss and delay testing on the system was required to determine the reliability of the tool in the process of transmitting and receiving data. The quality of service (QoS) testing results was as follows: average data loss gateway-server monitoring was 10.6%, the average gateway-server monitoring delay was 1.9 s, and the average server-gateway control delay was 7.1 s. When the greenhouse temperature parameter value is less than the specified maximum threshold, the system turns on the drum fan so that the temperature reaches the minimum value at the threshold limit.
References
Amam and S. Rusdiana, “Pertanian Indonesia dalam menghadapi persaingan pasar bebas,” J. Agriovet, vol. 4, no. 1, pp. 37–68, Oct. 2021, doi: 10.51158/agriovet.v4i1.506.
A.R. Salasa, “Paradigma dan dimensi strategi ketahanan pangan Indonesia,” Jejaring Admin. Publik, vol. 13, no. 1, pp. 35–48, Sep. 2021, doi: 10.20473/jap.v13i1.29357.
A. Musthafa, S.N. Utama, and T. Harmini, “Sistem kontrol suhu ruangan dan penyiraman tanaman bawang merah pada greenhouse dengan smartphone,” Multitek Indones. J. Ilm., vol. 12, no. 2, pp. 95–103, Dec. 2018, doi: 10.24269/mtkind.v12i2.1254.
N.D. Setiawan, “Otomasi pencampur nutrisi hidroponik sistem NTF (nutrient film technique) berbasis Arduino Mega 2560,” J. Tek. Inform. Unika St. Thomas (JTIUST), vol. 3, no. 2, pp. 78–82, Dec. 2018, doi: 10.17605/jti.v3i2.292.
Helmy et al., “Pemantauan dan pengendalian kepekatan larutan nutrisi hidroponik berbasis jaringan sensor nirkabel,” J. Nas. Tek. Elekt. Teknol. Inf., vol. 7, no. 4, pp. 391–396, Nov. 2018, doi: 10.22146/jnteti.v7i4.456.
L. Rahmawati, H. Iswahyudi, and B. Alexander, “Penerapan hidroponik sistem nutrient film technique (NFT) di Politeknik Hasnur,” Agrisains, J. Budid. Tanam. Perkeb., vol. 6, no. 1, pp. 8–12, Jun. 2020, doi: 10.46365/agrs.v6i01.371.
M.A.K. Parikesit et al., “Otomatisasi sistem irigasi dan pemberian kadar nutrisi berdasarkan nilai total dissolve solid (TDS) pada hidroponik nutrient film technique (NFT),” Widya Tek., vol. 17, no. 2, pp. 70–78, Nov. 2018, doi: 10.33508/wt.v17i2.1964.
A.D. Purwanto, F. Supegina, and T.M. Kadarina, “Sistem kontrol dan monitor suplai nutrisi hidroponik sistem deep flow technique (DFT) berbasis Arduino NodeMCU dan aplikasi Android,” J. Teknol. Elekt., vol. 10, no. 3, pp. 152–158, Sep. 2019, doi: 10.22441/jte.v10i3.002.
M.A.J. Hidayat and A.Z. Amrullah, “Sistem kontrol dan monitoring tanaman hidroponik berbasis Internet of things (IoT) menggunakan NodeMCU ESP32,” J. Saintekom, Sains Teknol. Komput. Manaje., vol. 12, no. 1, pp. 23–32, Mar. 2022, doi: 10.33020/saintekom.v12i1.223.
William, H. Suharto, and H. Tanudjaja, “Sistem pemantauan dan pengendalian parameter lingkungan pertumbuhan pada tanaman hidroponik,” TESLA, J. Tek. Elekt., vol. 18, no. 2, pp. 188–207, Oct. 2016, doi: 10.24912/tesla.v18i2.305.
M.J.D. Firdausyah, P.W. Rusimamto, B. Suprianto, and Endryansyah, “Sistem pengendali suhu air nutrisi pada hidroponik NFT (nutrient film technique) berbasis PID controller,” J. Tek. Elekt., vol. 11, no. 1, pp. 117–125, Jan. 2022, doi: 10.26740/jte.v11n1.p117-125.
R. Susana, F. Hadiatna, and A. Gusmantini, “Sistem multihop jaringan sensor nirkabel pada media transmisi Wi-Fi,” Elkomika, J. Tek. Energi Elekt. Tek. Telekomun. Tek. Elektron., vol. 9, no. 1, pp. 232–248, Jan. 2021, doi: 10.26760/elkomika.v9i1.232.
U. Syafiqoh, Sunardi, and A. Yudhana, “Pengembangan wireless sensor network berbasis internet of things untuk sistem pemantauan kualitas air dan tanah pertanian,” J. Inform., J. Pengemb. IT, vol. 3, no. 2, pp. 285–289, May 2018, doi: 10.30591/jpit.v3i2.878.
T.M. Bandara, W. Mudiyanselage, and M. Raza, “Smart farm and monitoring system for measuring the environmental condition using wireless sensor network - IoT technology in farming,” 2020 5th Int. Conf. Innov. Technol. Intell. Syst. Ind. Appl. (CITISIA), 2020, pp. 1–7, doi: 10.1109/CITISIA50690.2020.9371830.
A. Omairi and Z.H. Ismail, “Low power wireless temperature and humidity sensing based on CM5000 node and SHT11 sensor,” 2016 IEEE Int. Conf. Underw. Syst. Technol., Theory Appl. (USYS), 2016, pp. 183–187, doi: 10.1109/USYS.2016.7893907.
I.G.S. Sudaryana, “Pemanfaatan relai tunda waktu dan kontaktor pada panel hubung bagi (PHB) untuk praktek penghasutan starting motor star delta,” J. Pendidik. Teknol. Kejuru., vol. 12, no. 2, pp. 97–108, Jul. 2015, doi: 10.23887/jptk-undiksha.v12i2.6478.
B. Smith, Beginning JSON. Berkeley, CA, USA: Apress Berkeley, 2015.
Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008, Sep. 2008. [Online]. Available: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
“Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS),” ETSI, Valbonne, France, TR 101 329 V2.1.1 (1999-06), 1999. [Online]. Available: https://www.etsi.org/deliver/etsi_tr/101300_101399/101329/02.01.01_60/tr_101329v020101p.pdf
J. Bardwell. Converting Signal Strength Percentage to dBm Values WildPackets. (2002). [Online]. Available: https://d2cpnw0u24fjm4.cloudfront.net/wp-content/uploads/Converting_Signal_Strength.pdf
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.