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Abstract. The monitoring of mangrove and its trend over large areas can be done using multi-temporal
remote sensing technology. However, remote sensing data is often contaminated by cloud cover, and its
corresponding shadow resulted in missing data. This study aims to assess the performance of the existed gap-
filling techniques, such as, linear, spline, stineman, data interpolation Empirical Orthogonal Function
(Dineof) and spatial downscaling strategy employing the Proba-V imagery in 100 m, when being used for
estimating the missing data and depicting the trend in NDVI from Landsat 8 OLI by using Mann-Kendall.
The study was conducted in the Mangrove Forests at Segara Anakan, Central Java which threatened by
climate change and human activities. Our result suggested that EOF-based interpolation gave better
prediction results and more accurate in predicting longer missing data. Linear interpolation, on the other
hand, was accurate to predict shorter missing data. Overall, all interpolation results can reconstruct 64
(spline) to 72 % (Dineof) of missing data in NDVI with the RMSE of 0.10 (Dineof) - 0.13 (spline). A
consistently decreasing trend was also found from the four interpolation methods, which showed the
consistency of the interpolated values when used for deriving trends with similar patterns of overall
decreasing trend and magnitude of changes of -0.0095 to -0.0099 (NDVT unit) over the mangrove areas in
2015. The result demonstrated the potential ability of gap-filling methods for simulating the value of missing

data and for deriving trends.

©2020 by the authors. Licensee Indonesian Journal of Geography, Indonesia.
This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution(CC BY NC) licensehttps://creativecommons.org/licenses/by-nc/4.0/.

1. Introduction

Mangroves are one of the critical ecosystems that provide
benefits both in terms of ecology and socio-
economic. Around the world, there are around 1.7 x 10 5 km2
of mangroves in a coastal environment (Valiela, Bowen, &
York, 2001). Although ecosystem services provided by
mangroves are significant, the existing mangroves are
threatened by the conversion of land use into non-mangroves
such as ponds and other land use (Alongi, 2002). In addition
to land conversion, mangroves are also threatened by the
phenomenon of global warming with the rise of seawater
(Gilman, Ellison, Duke, & Field, 2008). Therefore, consistent
monitoring of mangrove ecosystems on a regional scale is
essential for tackling the possible impact of environmental
deterioration on the mangrove ecosystem.

Indonesia is a country with the longest coastline in the
world whose coastal areas can provide the environment for
mangroves to sustain. One of the famous mangrove areas is
Segara Anakan, in the southern part of Java Island. The
mangrove ecosystem in Segara Anakan is located on a lagoon
between the islands of Nusakambangan and the coast of
Cilacap. Coastal ecosystems in the Segara Anakan area
possess a high vegetation diversity, with 21 species of trees
present in the coastal region (Hinrichs, Nordhaus, & Geist,
2009). Over time, this ecosystem, including mangroves is
threatened by changes in land use with the construction of
settlements, fisheries, and agricultural areas (Ardli & Wolft,

2009; Jennerjahn & Yuwono, 2009; Yuwono et al., 2007).
Therefore, anticipating the extent to which changes in land
use affect the mangrove ecosystem needs to be done
by using remote sensing technologies.

The development of remote sensing technology allows for
multi-temporal observation by utilizing existing satellite
image data archives. The campaign of optical remote sensing
satellite with medium spatial resolution, such as Landsat that
has been existed from 1970 with Landsat MSS mission, up to
now Landsat 8 OLI (Roy et al., 2014) can be used for multi-
temporal observation. Landsat, in particular, has better
spatial resolution (30 m) which is more suitable for mangrove
monitoring than other coarser remote sensing data, for
instance MODIS (Son et al., 2014). Several studies have
employed this sensor for mangrove monitoring, especially for
mapping mangrove extent and change detection (B. Chen et
al,, 2017; C.-F. Chen et al., 2013; Long & Giri, 2011; Pham &
Yoshino, 2015; Son et al., 2014). However, big problem of
optical satellite imagery such as Landsat is the persistent
cloud cover especially in tropical areas (Weiss et al., 2014).
The clouds and cloud shadow cover produced missing data
on the imagery. To optimize the capabilities of Landsat
imagery, especially in monitoring mangrove objects, digital
image processing is needed to account for the missing data
due to cloud cover.

Cloud cover is one main problem in the optical remote
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sensing system that renders objects under the coverage of
cloud shadows to become undetected and resulted in missing
data. The missing data can be reconstructed by using other
data taken at different dates to perform a temporal
interpolation, such as linear interpolation, as the simplest and
straightforward method. However, linear interpolation
analysis is working best only for short gaps and for variables
that have high collinearity (Junninen, Niska, Tuppurainen,
Ruuskanen, & Kolehmainen, 2004). Therefore, other
interpolation methods are available to accommodate the non
-linear pattern that might happen by employing non-linear
interpolation such as spline, stineman, and empirical
orthogonal function. Those interpolation methods are
essential to estimate the complete temporal profile of the
remote sensing pixels, which are beneficial for environmental
studies.

Remote sensing has the advantages in environmental
applications, especially with the abundant availability of
multi-temporal data on optical remote sensing. The spectral
characteristics of optical remote sensing image data can
reflect the biophysical characteristics of vegetation. However,
classic problems in multi-temporal analysis using remote
sensing of medium-scale optical systems are cloud cover
resulted in the missing data. Gap-filling methods can be
utilized for reconstructing the missing data, however, that
temporal interpolation was commonly conducted in the
coarse spatial resolution data (> 250 m) and for atmospheric
variables (Aires, Prigent, & Rossow, 2004; Kilibarda et al.,
2014; Lguensat, Tandeo, Fablet, & Garello, 2014). Another
approach to derive the missing data can be done by using the
values from the coarser-resolution data which possesses
higher temporal resolution than medium to high spatial
resolution data, enabling better probability to acquire a cloud
-free observation. The analysis can be done by implementing
spatial downscaling analysis by modelling the relationships
between coarse and medium to high spatial resolution pixels,

-7.70

10
om—

-7.80
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to generate a higher spatial resolution data from the coarse

resolution which can be used to replicate the missing values.

The method of spatial downscaling was commonly used for

climatic and atmospheric variables (C. Chen, Zhao, Duan, &

Qin, 2015; Fu, Xu, Zhang, & Sun, 2018; Groppelli, Bocchiola,

& Rosso, 2011; Q. Zhang, Shi, Singh, Fan, & Huang, 2017).

Spatial downscaling method also can be combined with the

geostatistical interpolation methods (X. Zhang, Jiang, Zhou,

Xiao, & Zhang, 2012). Therefore, it is imperative to test those

methods to be implemented on medium spatial resolution

remote sensing data, i.e. Landsat 8 OLL

This study aims to assess the performance of interpolation
methods in reconstructing the missing data to be able to be
used for environmental monitoring applications, such as
mapping the trend of greenness values (represented by using

Normalized Difference Vegetation Index (NDVI) in this

study) of important vegetation ecosystems i.e. Mangrove. The

proper mapping method of the mangrove ecosystem was
effectively performed by using optical remote sensing data

(Aschbacher et al,, 1995). In addition, mangrove ecosystem

also requires a multi-temporal monitoring effort (Hartini,

Saputro, & Yulianto, 2010) due to the consistent and

amplifying anthropogenic and climate change pressures. The

mapping effort was better be conducted using data with high
spectral and spatial resolution data (Ibharim, Mustapha,

Lihan, & Mazlan, 2015), such as Landsat system or other data

with similar or higher spatial and spectral configuration ,

considering the typical narrow stands and small areas of

mangroves (Green, Clark, Mumby, Edwards, & Ellis,

1998). Based on the research gaps identified from the

previous studies, research questions can be formulated into 2

(two) main questions, such as:

1. How accurate the temporal interpolation methods alone
and when combined with the spatial downscaling
methods for reconstructing the missing data of NDVI in
medium spatial resolution imagery, for instance, Landsat
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Figure 1. Map of the study area with land use information (source: author data analysis)
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8 OLI in Mangrove ecosystem, and
2. How consistent the resulted NDVI trends at Mangrove
areas from different temporal interpolation methods

2. The Methods
Study Area

The study area is located at 108.73° - 109.19° BT and 7.87°
- 7.63° LS, which is the area of Nusakambangan Island where
the mangrove ecosystem of Segara Anakan is located
(Figure 1). This area has quite diverse human activities,
which are becoming the threats to mangrove ecosystem. The
existence of an extensive sedimentation processdue to
unsustainable land-use change processes, through the
Citanduy river resulted in sedimentation in the Segara
Anakan lagoon by 2559 ha in 1978 - 2004 (Nordhaus,
Hadipudjana, Janssen, & Pamungkas, 2009). In addition to
the Citanduy river, there are seven other rivers that
have estuary channels in Segara Anakan (Holtermann,
Burchard, & Jennerjahn, 2009). If the process of changing
land use on land is not adequately mitigated, the expansion
of the sediment areas will affect the ecosystem of
the mangrove in Segara Anakan.

Another threat is the land-use change in Segara Anakan
which also triggers mangrove deforestation to change the
function of land use in the area into farms and agricultural
land and the existence of oil refineries located here because
the waste from the oil refinery can damage the ecosystem in
Segara Anakan (Nordhaus, 2009). The active human activities
in this area encourage the importance of monitoring
vegetation ecosystems, especially mangroves, which to
sustain the ecological values of mangrove in Segara Anakan.

Normalized Difference Vegetation Index (NDVI)

Vegetation index is an image transformation that aims to
highlight the appearance of vegetation in the image. This is
done by performing a band ratio using channels on remote
sensing images that are sensitive to vegetation, especially on
near red and infrared channels. The most widely used
vegetation index is the Normalized Differential Vegetation
Index (NDVI) developed by Rouse, Haas, Schell, and Deering
(1974), because of its easiness and high relationship to the
greenness of vegetation and vegetation areas and its low
sensitivity to topographic effects (Matsushita, Yang, Chen,
Onda, & Qiu, 2007).

The simplicity in NDVTI calculations allows the provision
of NDVI data over a long period. Some data providers
provided NDVTI from 1981 which was the beginning of the

era of remote sensing. This data allows for more prolonged
monitoring of the development and trend of vegetation. In
this study, data NDVI from Landsat 8 OLI level 1 on path
121 and row 065 that have been corrected terrain, and the
data of NDVI from Proba - V ESA with a spatial resolution
of 100 m is used. Both of these data were chosen because of
the high linear relationship between NDVI values generated
by those data, especially in Southeast Asia (Arjasakusuma et
al., 2018).

Landsat 8 OLI data were collected from January to
December 2015 from USGS Earth Explorer with level-2
product or have been corrected into at-surface reflectance to
match with the level of correction from Proba-V data. Clear
pixels for each layer was then identified and cloud-and-cloud
shadow contaminated pixels were removed by using the
“pixel_qa” band and its corresponding code from Guide
(2018), as reference. 12 (twelve) Landsat 8 imagery was used
to represent the values in different months to match the
period of the Proba-V data in the year 2015. Proba-V data is
processed by using Maximum Value Composite (MVC)
analysis (Equation 1.) to obtain maximum monthly value
and reduce the effects of cloud disturbances.

MVC = MAX Y} NDVI

Where n = the number of scenes in the span of 1 month

Interpolation methods

Monitoring changes and trends in the earth's surface is
usually done using multi-temporal data by utilizing the
dense revisit  time from  remote  sensing satellites.
However, remote sensing satellites that have frequent (daily)
revisit time are mostly remote sensing data with a coarse
spatial resolution (> 100 m). Higher spatial resolution data
such as Landsat data do not have frequent revisit-time with
remote sensing data with this rough resolution. Coupled with
relatively high cloud frequencies in Indonesia, complete
multi-temporal data with spatial resolutions such as Landsat
become unavailable.

The gap-filling analysis aims to patch missing data mainly
due to atmospheric disturbances or clouds. The commonly
used method is to use linear interpolation by considering the
trend of surrounding time-series values. But this method
does not consider the variances that may occur
frequently. Methods that accommodate variations in time
series values that often occur can be done using the
"empirical  orthogonal  function” (EOF) technique. This

Table 1. Interpolation methods explored in this study

Interpolation Methods

Remote Sensing Data

References

Linear Temporal Interpolation
Spline Temporal Interpolation
Stineman Temporal Interpolation
Dineof Temporal Interpolation

(best accuracy temporal interpolation
(selected from the above method)) + spa-
tial downscaling

Landsat 8 OLI (12 Scenes from January to
December 2015)

Gap-filled Landsat 8 OLI + Proba-V data

An implementation of Spline from “rtsa”
package (Filipponi et al., 2018)

Stineman (1980) interpolation implement-
ed in “rtsa” package (Filipponi et al., 2018)

Alvera Azcarate et al. (2011)

A combined methods constructed utilizing
Empirical Orthogonal Teleconnection
(Appelhans, Detsch, & Nauss, 2015) and
temporal interpolation
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Figure 2. The number of missing data due to clouds and cloud shadows in the Landsat 8 OLI data in 2015. The green dots repre-
sent the validation points (360 data) (source: author data analysis)

algorithm uses the basic concept of principal component
analysis (PCA), which collects modes that can explain most
of the variance in the data. By patching gaps in time-series
data, monitoring of multi-temporal remote sensing objects
will be carried out. In this study, Data Interpolation
Empirical Orthogonal Functions (DINEOF) data developed
by Alvera Azcarate, Barth, Sirjacobs, Lenartz, and Beckers
(2011) was tested and combined with linear, spline and
stineman interpolation in filling in missing data in time-
series data. The spline is an interpolation method that applied
a line fitting to match with the curve of the data while
stineman interpolation, named after its inventor Stineman
(1980), is also a curve-fitting method but can tolerate abrupt
change in the data slope (Miller-Ihli, O'Haver, & Harnly,
1984).

Besides employing the temporal values for interpolating
the missing data, we developed an interpolation method that
combined temporal interpolation and spatial downscaling
methods. This method consists of 2 steps, 1.) performing
temporal interpolation (selected from the best accuracy
between, linear, spline, stineman and Dineof), and 2.)
downscaling the Proba-V NDVI values (100 m) by using the
gap-filled data as the reference for downscaling using the
Empirical Orthogonal Methods. Therefore, there are five
interpolation methods conducted in this study as mentioned
in Table 1.

The analysis of gap-fill interpolation was conducted by
using the “rtsa” package which had been developed and
used by Filipponi et al. (2018) for filling the gap in MODIS
data. While Empirical Orthogonal Teleconnection (EOT)
method was conducted by using remote package (Appelhans
et al., 2015)

Validation

Assessing the performance of the gap-filling techniques
was conducted by sampling and removing the sample pixels
from the data. We distributed randomly 30 points in each
image layer (12 layers; the total of sample points was 360
points) at the areas which were not covered by clouds and
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cloud shadows. Afterward, we set the values in that point into
NA or No Data. By performing the gap-filling techniques, the
missing data were interpolated, and the results of the
interpolation were compared with the original values. We
further assessed the relationships between the number of
missing data (gaps) with the prediction performance to
conclude whether the interpolation is reasonable to predict
only a short gap or can be used at longer gap of data.
Quantitative assessment was conducted by calculating the R?
and RMSE.

Based on Figure 2., there are extensive clouds and cloud
shadow coverage in the study area, with the range of missing
data from 1 to 10 data from the total 12 data layers. Most of
the study area was missing 3-6 data, which made this area
suitable for the assessment of the gap-filling interpolation
method.

Trend Analysis in Mangrove Areas using Mann-Kendall
dan Sens Slope

Trend analysis is used to detect a downward trend or
increase in the greenness values of mangroves in Segara
Anakan. The trend analysis used are Mann-Kendall and Sens
Slope. Mann-Kendall is used to detect the monotonic trend
(increase or decrease) that occurs by looking at the Kendall's
Tau value produced, while Sen's Slope is used to measure the
magnitude of the trend that happens so that the amount of
the decline is in accordance with the data unit. The Mann-
Kendall analysis is done using R with the "Kendall" package
(McLeod, 2011) and Sens Slope Analysis using the package
"Trend" (Pohlert, 2017).

Trend analysis was conducted by using the data which
has been gap-filled by using the interpolation methods in 30-
m spatial resolution. The results of the analysis of trends in
the gap-filled results were comparedto assess whether
different gap-filling techniques yielded a significantly
different trend when the results were used in the trend
analysis.

a. Landsat 8 which has gone through gap-filling processes
with linear, spline, stineman and DINEOF interpolation,
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Figure 3. example of the NDVI reconstructed data in January 2015 (below) by using dineof interpolation which able to fill the
values of missing data (source: author data analysis)
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Figure 4. The validation results of the interpolated/reconstructed values (y-axis) versus the original NDVI values (x-axis)
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demonstrated Dineof as the best temporal interpolation method among other methods
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b. A downscaled Proba-v NDVI product by using the
combination of empirical orthogonal function method
and gap-filled Landsat 8 OLI (Dineof)

Mangrove data in this study were identified by using
maximum likelihood classification by using spectral values of
Landsat 8 OLI (single date data with relatively no clouds).
The Landsat 8 data used for the classification was recorded on
August 25, 2015. Majority filter (3 x 3 window size) and
manual cleaning/refining by using visual inspection from
Google Earth data for reference, were conducted to remove
the misclassification from the result.

3. Result and Discussion
Interpolation and Validation Results

The interpolation produced the full coverage of the multi-
temporal data and has been able to successfully fill the
missing data. An example of the results can be seen in Figure
3 where all the cloud-and-cloud shadows pixel were supplied
by the interpolated values. The calculation will only apply to
the pixels with the missing data. Therefore, the values of the
non-missing data (identified as clear pixel in “qa_pixel” data)
were unchanged. However, it can be seen in Figure 3 that the
interpolation produced a nearly seamless image for single

Combination Method (Dineof + Proba-V Spatial
Downscaling)

£ 12
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Figure 5. The performance of the combination method between spatial
downscaling and temporal interpolation
(Source: Author data analysis, 2019)

Table 2. The performance of different gap-filling methods at different missing data scenarios
(source: author data analysis, 2019)

Accuracy at Different Number of

Accuracy at Different Number

Gaps/Missing Data RMSE RSq of Gaps/Missing Data RMSE RSq

Linear 0.165 0.676 Linear 0.100 0.738

Spline 0.169  0.668 Spline 0.125 0.667

Gap:1Data Stine 0.166 0.678 Gap:5Data  Stine 0.103 0.735
(n=13) Dineof 0.168  0.656 (n=92) Dineof 0.102 0.723
Downscaled EOF 0.166  0.671 ED g‘gn“aled 0.108 0.687

Linear 0.156 0.651 Linear 0.098 0.697

Spline 0.159  0.641 Spline 0.109 0.669

Gap:2Data Stine 0.157  0.648 Gap:6Data  Stine 0.099 0.699
(n=13) Dineof 0.162  0.670 (n=69) Dineof 0.075 0.819
Downscaled EOF 0.156  0.671 EngFvnscaled 0.092 0.733

Linear 0.102 0.749 Linear 0.132 0.465

Spline 0.102  0.761 Spline 0.161 0.360

Gap:3Data Stine 0.101  0.758 Gap:7Data  Stine 0.133 0.463
(n = 40) Dineof 0.082  0.826 (n=44) Dineof 0.135 0.437
Downscaled EOF 0.082  0.815 EngFvnscaled 0.123 0.511

Linear 0.112 0.682 Linear 0.111 0.831

Spline 0.141  0.614 Spline 0.072 0.894

Gap:4Data  Stine 0.117  0.668 Gap:8-9  Stine 0.114 0.798
(n=80) Dineof 0.099  0.755 Data (n =10) Dineof 0.049 0.946
Downscaled EOF 0.105  0.710 EDg‘gnscaled 0.081 0.759
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imagery with no traceable artifact at individual data.
However, the reliability of the interpolated values can only be
assessed and examined from the validation result.

The validation results concluded that Dineof
interpolation gave better accuracy when compared to linear,
spline, and stineman interpolation. Dineof can simulate 72 %
of the missing data which is 3 - 8 % higher than the other
interpolation methods. In terms of RMSE, Dineof has the
values of 0.104 while linear and stineman produced the
RMSE values of 0.113 and 0.115, while spline produced 0.131
of RMSE . The RMSE errors in the range of 0.104 to 0.131,
resembled around 5 to 6.5 % deviation from the full range of
NDVI values (-1 to 1), while the RMSE difference between
the interpolation methods yielded the range between 0.009 to

superiority of Dineof when compared to the other methods.
On the other hand, these results also demonstrated spline
interpolation as the least suitable interpolation algorithm for
reconstructing missing NDVI data due to the lowest accuracy
and due to the calculation flexibility, can yield the values
beyond the normal range of NDVI (see Fig. 4b). From the
scatterplots in Figure 4, it can also be seen that spline
produced the value above 1 for NDVI which were outside of
the range of NDVI values. The other methods produced the
interpolated values within the range of NDVI values from -1
to 1. The error in spline interpolation can be provided by the
nature of the curve-fitting calculation of spline which may
produce overly high or low values when more missing data
are existed. Our validation analysis concluded that Dineof as

0.027 of NDVI wunit. This validation concluded the the best temporal interpolation algorithm which gap-filled

Table 3. Statistics of Mann-Kendall test and Sens Slope test at Mangrove Area in 2015

Linear Spline Stineman Dineof
Trend Statistics Kendall's Sens Kendall's Sens Kendall's Sens Kendall's Sens
Tau Slope Tau Slope Tau Slope Tau Slope
min -1.0000 -0.0874 -1.0000 -0.0785 -1.0000 -0.0880 -0.9394 -0.0538
mean -0.4513 -0.0096 -0.3897 -0.0099 -0.4489 -0.0098 -0.4182 -0.0095
max 1.0000 0.0682 1.0000 0.1127 1.0000 0.0676 0.7273 0.0593
std deviation 0.2734 0.0080 0.2509 0.0087 0.2634 0.0078 0.1990 0.0060

108.825 108.975

108.900

\0246810km'
| . .|
i
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108.900

1 -05 0 05 1
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Figure 6. Comparison of Kendall’s Tau values in mangrove region from different interpolation methods in which
reddish color represents decreasing trend (closer to -1) and yellowish to blue represents increasing trend (closer to 1)
(Source: Author data analysis, 2019)



ASSESSMENT OF GAP-FILLING INTERPOLATION METHODS

Sanjiwana Arjasakusuma, et .al

data was used as the reference for conducting the
downscaling process from Proba-V imagery.

The exploration of refining the gap-filled method by
combining spatial downscaling from Proba-V data with
Dineof interpolation results generated a lower accuracy when
compared by the original Dineof data. The accuracy of the
combination method between temporal interpolation
(Dineof) and spatial downscaling (Proba-V with EOF)
yielded an rsq of 0.703 and RMSE of 0.108 (Figure 5.),
around 3 % lower than the original Dineof interpolation.
Further exploration should be made to explore which
statistical properties showed a better relationship with
Landsat 8. Here in this study, Maximum Value Composite
was employed with the assumption that the cloud effects have
been reduced. However, other statistical properties such as
median or mean may give a better prediction result in the
downscaling process since a recent study by Taddeo,
Dronova, and Depsky (2019) suggested that median values
from time-series data are more strongly related to the
vegetation biophysical properties.

Although the overall results of the combined methods
were lower than the Dineof interpolation, there was an
increase in the prediction level in the event of 7
(seven) missing data (out of 12 data) where spatial
downscaled eof produced the highest accuracy (Table. 2).
Unfortunately, the increase is not consistent, and the
performance in the other scenarios are notably lower than
the original Dineof. From Table 2., It can be seen that the
linear interpolation worked best at predicting short gaps such
as missing 1-2 data and also at missing 5 data (5 gaps) while
Dineof and downscaled eof worked best at predicting other
numbers of missing data. Our results are also in conjunction
with the result from Junninen et al. (2004), which suggested
that linear interpolation performed best when predicting
short gaps in missing data. For more missing data, our study
revealed that dineof and downscaled dineof method
performed better than the other methods. Limitation of
dineof and downscaled dineof may lies on the longer
computing time, especially when long time series data was
used.

The trend at Mangrove Areas in 2015

The analysis of trends and magnitude from by performing
the Mann-Kendall and Sens Slope test generated a similar
overall pattern of trend. To acquire the trend over mangrove
areas, the previous gap-filled results were cropped by using
the mangrove map detected by using maximum likelihood,
which has been refined by using majority filter and visual
cleaning. In the mangrove areas, all interpolation results
identified an averagely decreasing trend with Kendall's tau
value of -0.42 to -0.45 and the magnitude of change from -
0.0095 to -0.0099 of unit NDVI (Table 3.). Those statistics
emphasized the overall decreasing trend over the mangrove
areas in Segara Anakan in 2015. The highest degree of
decrease was located in the east part of the mangrove areas
which may be caused by the land-use change and/or
sedimentation for the terrestrial areas (Figure 6.). Also, the
decrease can be caused by the fact that the year 2015 is the
ENSO (warm) active period, which affects mangrove in the
area. However, finding the driving factor of the decreasing
trend was not included in the scope of this study.
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4. Conclusion

This study concluded the potential of the gap-filled
method for reconstructing the missing data due to clouds
and cloud shadows in the optical data by employing the
temporal information from different dates and including the
other NDVI data, supposedly from higher temporal
resolution data through spatial downscaling. Dineof
demonstrated a better prediction ability among the other
methods for longer missing data while linear interpolation
can be used for interpolating a short gaps in time series data,
with spline as the least reliable method. The combination of
spatial downscaling (EOT) of the Proba-V and a gap-filled
data from Landsat (Dineof) produced a slightly lower
accuracy than the original Dineof. As for trend analysis, it
was found that the variety of gap-filling methods yield a
relatively similar trend results both in the detection of the
monotonic trend and the magnitude of changes. In our study
areas, consistent decreasing trend with the magnitude of -
0.0095 to -0.0099 (NDVI unit) was found at the Segara
Anakan mangrove area in the year of 2015. The declining
trends in Mangrove at Segara Anakan may be resulted from
the strong ENSO event which happened on that year and
created prolonged drought. However, further study can
explore the reason for the decreasing trend of mangrove in
Segara Anakan for planning future mitigation process. In
addition, more exploration on the ability of temporal
interpolation when identifying sudden change also should be
conducted in the future study.
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