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INTISARI
Kabupaten Siak menginisiasi Kebijakan Siak Hijau tahun 2016 untuk menunjukkan 
komitmen dalam mengurangi emisi karbon. Penelitian ini bertujuan untuk membuat 
model proyeksi tutupan lahan, estimasi simpanan karbon dan emisi CO  di Kabupaten 2

Siak yang terkait dengan implementasi Kebijakan Siak Hijau. Citra Landsat 
digunakan untuk klasifikasi tutupan lahan tahun 2016-2023. Proyeksi tutupan lahan 
tahun 2030 dilakukan dengan model CA-Markov. Delapan faktor pendorong yang 
digunakan yaitu ketinggian, suhu, curah hujan, kepadatan penduduk, jarak dari jalan, 
area terbakar, kawasan hutan, dan evidence likelihood. Simpanan karbon dianalisis 
menggunakan model Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST). Emisi CO  dihitung berdasarkan emisi dari perubahan tutupan lahan dan 2

dekomposisi gambut. Hasil menunjukkan total simpanan karbon mengalami 
penurunan dari 1.232,52 MtC pada tahun 2016 menjadi 1.232,12 MtC pada tahun 2023. 
Selama tujuh tahun, perubahan tutupan lahan menyebabkan emisi CO  sebesar 1,4 2

MtCO e/tahun. Estimasi simpanan karbon di Siak tahun 2030 adalah 1.232,27 MtC, 2

dan emisi CO  pada tahun 2023-2030 sebesar 1,398 MtCO e/tahun. Kabupaten Siak 2 2

diperkirakan dapat menurunkan emisi karbon pada sektor kehutanan dan lahan 
gambut tahun 2030 sebesar 0,03% dari target 23,28 MtCO e/tahun.2

ABSTRACT
The Siak Regency implemented the Green Siak Policy in 2016 to commit to reducing 
carbon emissions. This research aimed to assess land use and land cover (LULC) 
changes from 2016 to 2023 and make projections for 2030, quantify carbon stocks by 
LULC type, and estimate CO  emissions associated with the implementation of the 2

Green Siak Policy. This research classified LULC using Landsat imagery. It employed 
the CA-Markov to project land cover in 2030 using eight driving factors: elevation, 
temperature, rainfall, population density, distance from roads, burned areas, state 
forest areas, and evidence likelihood. This research assessed carbon stocks using the 
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and 
calculated CO  emissions based on changes in LULC and peat decomposition. The 2

findings revealed a slight reduction in total carbon stock from 1,232.52 MtC in 2016 to 
1,232.12 MtC in 2023, with annual CO  emissions of 1.4 MtCO e. Projections indicated 2 2

an increase in carbon stock, expected to reach 1,232.27 MtC by 2030, with anticipated 
annual emissions of 1.398 MtCO e  from 2023 to 2030. While the Green Siak Policy 2

targeted a decrease in emissions of 23.28 MtCO e/year by 2030, the results indicated 2

that the Regency achieved merely 0.03% of its target.
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Introduction

 The Indonesian government is committed to 

reducing greenhouse gas (GHG) emissions as part of 

its Nationally Determined Contribution (NDC). Riau 

Province is instrumental in achieving these GHG 

reduction targets, as it contains extensive peatlands 

estimated at 53 million hectares and state forest areas 

totaling 54 million hectares (KLHK 2022a). The 

province's initiatives to align with the Medium-Term 

Development Plan (RPJMD) have formulated an 

action plan for GHG mitigation across 12 regencies 

(KLHK 2022a). A notable example is Siak Regency, 

which implemented a comprehensive set of these 

action plans and was designated a "green regency" in 

2016 to promote the sustainable use and conservation 

of natural resources. Siak is the only regency in Riau 

Province to adopt a green policy following Siak Regent 

Regulation No. 22 of 2018, later reinforced by Regional 

Regulation No. 4 of 2022.

 The Siak Government introduced the Green Siak 

Policy in 2016, yet there has been no evaluation 

regarding the effectiveness of this policy in reducing 

greenhouse gas (GHG) emissions. Conducting such 

an evaluation is crucial, as one of the policy's primary 

goals is to achieve a 22.7% reduction in GHG emissions 

by 2030 based on the 2018 baseline (Governor of Riau 

2022) across five key sectors: forestry and peatland, 

agriculture, energy and transportation, industry, and 

waste (Regent of Siak 2018). The Enhanced Nationally 

Determined Contributions (NDC) document 

(Government of Indonesia 2022) indicated that 

changes in land use and land cover (LULC), along with 

peatland and forest fires, are the primary sources of 

GHG emissions in Indonesia, accounting for 50.13% of 

the national total. Consequently, monitoring LULC 

changes is essential since reductions in emissions 

related to forestry and peatland play a vital role in 

meeting national GHG targets.

 Greenhouse gas (GHG) emissions primarily 

comprise water vapor (H O), carbon dioxide (CO ), 2 2

methane (CH ), nitrous oxide (N O), ozone (O ), and 4 2 3

fluorinated gases (Yoro & Daramola 2020). Notably, 

CO₂ contributes to 80-90% of total anthropogenic 

emissions globally (Smoot & Baxter 2003), making it a 

strong indicator for overall GHG emissions in this 

analysis. This research aimed to assess land use and 

land cover (LULC) changes from 2016 to 2023 and 

make projections for 2030, quantify carbon stocks by 

LULC type, and estimate CO  emissions associated 2

with the implementation of the Green Siak Policy.

Methods

Research Area

 Siak Regency, located in Riau Province on Sumatra 

Island, spanned an area of 837,779 ha and was 

geographically positioned between 100°54'21” E to 

102°10'59” E longitude and 01°16'30” N to 00°20'49” N 

latitude, as presented in Figure 1. This research was 

conducted from October 2023 to May 2024.

Research Materials

 This research used data from various sources 

(Table 1),  including the Landsat 8 OLI/TIRS images 

for 2016, 2020, and 2023 obtained from Google Earth 

Engine. Moreover, a cloud-masking process was 

applied to acquire cloud-free images suitable for 

analysis.

LULC Classification and Accuracy Assessment

 This research generated LULC maps utilizing 

supervised classification through the maximum 

likelihood method. This classification technique is 

widely recognized in remote sensing and geospatial 

analysis as an effective approach for LULC mapping 

(Blissag et al. 2024). The resulting LULC maps 

comprised ten categories: dry land forests, mangrove 

forests, peat swamp forests, plantation forests, open 

areas, plantations, settlements, paddy fields, shrubs, 

and water bodies (Figure 2). Direct field surveys and 

high-resolution imagery from the Google Earth 

platform validated the 2023 LULC map. A stratified 

random sampling method was adopted to select 

samples, treating each LULC class as a distinct 

stratum, with a minimum of 50 sample points 

allocated per class (Lillesand et al. 2015). In total, 530 

sample points were distributed throughout the 

research area. The accuracy assessment utilized an 

error or confusion matrix, followed by calculating 

overall accuracy and the Kappa coefficient, with a 

target threshold set at ≥ 85%. The 2023 LULC, with ≥ 

85% accuracy level, served as a reference for classifying 

Landsat images from 2016 and 2020.
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Table 1. Data Types and Their Sources for This Research 

No. Data type Source

1
2
3
4
5
6
7
8
9

Landsat-8 OLI TIRS
Digital Elevation Model (DEM)
Temperature
Rainfall
Population density
Distance from road
Distance from river
Burned area
State forest area

https://earthengine.google.com/
Geospatial Information Agency https://tanahair.indonesia.go.id/
https://dataonline.bmkg.go.id/
https://dataonline.bmkg.go.id/
Badan Pusat Statistik Kabupaten Siak
Geospatial Information Agency https://tanahair.indonesia.go.id/
Geospatial Information Agency https://tanahair.indonesia.go.id/
Dirjen Planologi Kehutanan dan Tata Lingkungan, KLHK
Geospatial Information Agency https://tanahair.indonesia.go.id/

Figure 2. LULC map and ground checkpoints

Figure 1. The map of Siak Regency
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 Forest canopy density was assessed through 

overlay analysis of LULC and Normalized Difference 

Vegetation Index (NDVI) maps. The NDVI data 

processed using Google Earth Engine and illustrated 

in Figure 3 indicated vegetation health and density, 

directly impacting carbon storage capacity. These 

characteristics highlighted the importance of 

differentiating canopy density levels. Furthermore, 

the LULC map was overlaid with peatland distribution 

to distinguish various types of plantation forests and 

to identify Acacia species on peatlands and Eucalyptus 

species on mineral soils.

LULC Change Driving Factors 

 Several driving factors—such as elevation, 

slope, rainfall, temperature, distance from roads 

and rivers, burned areas, population density, 

state forest areas, and evidence likelihood—have 

significantly influenced changes in land use and 

land cover (LULC). Evidence likelihood was 

applied to transform categorical variables, such 

as transitions between land cover classes, into 

numerical values (Leta et al. 2021). Additionally, 

driving factor standardization was conducted 

using fuzzy set membership functions in IDRISI 

Selva software, enabling the conversion of diverse 

measurement units of the factor layers into 

comparable suitability values (Eastman 2012). 

The correlation strength between each driving 

factor and LULC change was evaluated using 

Cramer's V value. Factors demonstrating a 

moderate or stronger influence were identified by 

a Cramer's V value exceeding 0.10 (Akoglu 2018) 

and were included in the transition model. The 

calculation of the Cramer's V value relied on the 

following formula:

2which X  = chi-square; N = population size of the 

driving factor and land cover change (spatial 

units/grid cells); m = number of columns in the 

contingency table.

2726

LULC Change Prediction and Model Validation

 A spatial model for LULC change was developed 

utilizing the CA-Markov process within the Land 

Change Modeler (LCM) module of IDRISI Selva 

software. This model comprises several key stages: 

change analysis, transition potential modeling, 

change prediction, and validation. LULC changes 

between 2016 and 2020 were identified in the change 

analysis stage, resulting in data and maps for each 

LULC class.  The subsequent stage involved 

determining transition potentials and defining six 

sub-models of LULC change, namely deforestation, 

degradation, ecosystem enhancement, reforestation, 

succession, and agriculture or plantation. Following 

this, the Markov Chain model was employed to 

quantitatively assess the likelihood of pixel transitions 

between classes, resulting in a transition matrix 

(Darvishi et al. 2020; Bachri et al. 2024; Verma et al. 

2024). The multi-layer perceptron neural network 

method executed each transition sub-model, yielding 

accuracy rates and skill measure values. The skill 

measure calculations were conducted following the 

formula outlined by Kumar & Agrawal (2023): 

  S = [A – E(A)] / [1 – E(A)]

which E(A) = expected accuracy; A = measured 

accuracy. 

The expected accuracy was calculated using the 

following formula:

  E(A) = 1 / (T + P)

which T = the number of transitions in the sub-model; 

P = persistence classes in the sub-model. 

 The 2016 and 2020 LULC maps were utilized to 

simulate the LULC for 2023. This process included 

implementing a validation module to evaluate the 

accuracy of the predicted map by comparing it to a 

reference image from 2023. The model was deemed 

valid and suitable for generating a 2030 LULC 

prediction when the Kappa value fell within the 'very 

good' category (≥ 0.7).

Carbon Stock Estimation using InVEST

 The Integrated Valuation of Ecosystem Services 

and Tradeoffs (InVEST) model for carbon storage and 

sequestration was utilized to estimate carbon stocks. 

Data on various carbon pools were gathered through a 

literature review, as outlined in Table 3. Biomass 

values were converted into carbon stocks using a 

conversion factor of  0.47 (IPCC 2006). The 

calculations assumed that changes in above-ground 

biomass (AGB) resulting from land use and land cover 

(LULC) transitions also influenced other biomass 

components.

Figure 3. The distribution of NDVI in Siak Regency in 2023

Table 2. Forest Canopy Density Classification Based on NDVI Values

Table 3. Carbon pools associated with different LULC types

No. NDVI Values Canopy density class

1
2
3
4

NDVI ≤ 0
0 < NDVI ≤ 0,4

0,4 < NDVI ≤ 0,6
0,6 < NDVI ≤ 1

Open area or water body
Open canopy

Medium canopy
Closed canopy

2XV =
N (m–1)

No. LULC Sources

1
2
3

4
5
6

7
8
9
10

11

12

13
14

15

Dryland forest closed canopy
Dryland forest medium canopy
Dryland forest open canopy

Mangrove forest closed canopy
Mangrove forest medium canopy
Mangrove forest open canopy

Peat swamp forest closed canopy
Peat swamp forest medium canopy
Peat swamp forest open canopy
Acacia plantation forest

Eucalyptus plantation forest

Open area

Plantations
Paddy field

Shrubs

(Uryu et al. 2008; Krisnawati et al. 2015; 
IPCC 2019)

(Uryu et al. 2008; Krisnawati et al. 2014; 
IPCC 2019)

(Uryu et al. 2008; Krisnawati et al. 2015; 
IPCC 2019)

(Latifah & Sulistiyono 2013; IPCC 2019)

(Uryu et al. 2008)

(KLHK 2022b)

(Afentina et al. 2022; KLHK 2022b)

AGB 
(ton/ha)

Rooot: Shoot ratio

BGB DW LI

367
264
73

187
140
37

281
234
62
104

64

0

48.1
10

60.39

0.212
0.212
0.207

0.212
0.212
0.207

0.212
0.212
0.207
0.325

0.325

Nd

0.325
0.236

0.236

0.330
0.330
0.330

0.748
0.748
0.748

0.239
0.239
0.239
0.239

0.330

Nd

Nd
Nd

Nd

0.027
0.027
0.027

0
0
0

0.023
0.023
0.023
0.023

0.027

Nd

Nd
Nd

0.111

Remarks: AGB = Above ground biomass; BGB = Below ground biomass; DW = Deadwood; LI = Litter; Nd = No data.
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Remarks: AGB = Above ground biomass; BGB = Below ground biomass; DW = Deadwood; LI = Litter; Nd = No data.
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 Soil organic carbon (SOC) in mineral soils was 

estimated using the IPCC (2019) with a default value of 

52 tC/ha. For peatland soil carbon stock, the 

estimation was calculated using the following formula 

provided by Wahyunto et al. (2005):

  C  = B x A x D x %CPeatSoil

which B = bulk density of peat soil (gr/cc) (see Table 
24); A = peatland area (m ); D = peat depth (m) %C = 

Carbon content/C-organik (%).

 Total carbon stocks for each LULC class were 

calculated using the following formula:

  C = A x (C  + C + C  + C  + C )LULC AGB BGB DW LI SOC

which A = area of LULC class (ha); C , C , C , C , AGB BGB DW LI

C  = carbon stocks in each carbon pool (ton/ha).SOC

CO  Emission Calculation2

 CO  emission was estimated based on changes in 2

LULC and peat decomposition rates. The emissions 

resulting specifically from LULC change were 

calculated using the following formula:

  E  = (Ct2 – Ct1)/(t2 – t1) x (-CF)LULC

which E  = CO  emission from LULC changes (t LULC 2

CO /year); Ct1 = carbon stocks at early year (tC); Ct2 = 2

carbon stocks at late year (tC); t1 = early year; t2 = late 

year; FK = conversion factor of C to CO  (3.67). 2

 CO  emissions from peat decomposition were 2

calculated solely for areas experiencing deforestation 

and degradation in peat swamp forests. The formula 

used for the calculation was presented as follows:

  E  = A x EF  x CFPD PD

which E  = CO  emission from peat decompo-PD 2

sition (tCO /year); A = area of deforestation and 2

degradation of peat swamp forest (ha); EF  = PD

emission factor of peat decomposition (tC/ha/ 

year).

Results and Discussion

LULC Maps and Accuracy Assessment

 The accuracy assessment of the 2023 LULC map 

demonstrated a high level of reliability, reflected by a 

Kappa value of 0.88 and an overall accuracy of 89%. 

These figures indicate an almost perfect agreement, as 

both surpassed the 85% threshold (Pal & Ziaul 2017; 

Khwarahm et al. 2021; Shabani et al. 2022). An overlay 

analysis of the LULC map with NDVI and peatland 

distribution maps revealed 17 distinct land cover 

classes. However, water bodies and settlements were 

excluded from further analysis, as they did not 

significantly impact LULC change or carbon stocks in 

Siak Regency. Consequently, only 15 LULC classes were 

retained for further examination (Figure 4).

LULC Change Driving Factors

 The Cramer's V test indicated that the distance 

from rivers, slopes, and burned areas had a weak 

influence on LULC change, as reflected by Cramer's V 

values of less than 0.10 (see Figure 5). The consistent 

water availability throughout the research area and 

the prevalence of peatland with existing canal systems 

explain the weak correlation between distance from 

rivers and LULC change. However, this research 

suggested that including canals as a factor could 

enhance future studies, especially considering the 

extensive peatland management in Siak Regency 

(Dadap et al. 2021). The relatively flat landscape, 

covering 77% of the area or 644,854 ha, resulted in a 

minimal impact of slope on LULC change. Although 

the model excluded distance from rivers and slopes, it 

retained the burned area to account for the recurring 

nature of fire-related disturbances in the regency.
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Figure 4. LULC maps for the reference years 2016 (a) & 2023 (b)

Prediction and Validation of the 2023 LULC Map

 This research utilized maps from 2016 and 2020 to 

generate a prediction map for 2023 using LCM. The 

transition sub-models demonstrated an average 

accuracy rate ranging from 66.42% to 72.52%, with 

skill measures varying between 0.42 and 0.68, as 

shown in Table 5. These findings align with the 

observations made by Gibson et al. (2018), which 

indicated that accuracy rates for transition sub-

models fell between 36% and 89%. The variation in 

the accuracy of the transition sub-model can be 

attributed to the differential impact of the driving 

factors on each transition, with LULC changes 

grouped into sub-models based on common driving 

variables (Hasan et al. 2020; Solaimani & Darvishi 

2024). Notably, the agriculture or plantation category 

exhibited the lowest accuracy rate and skill measure, 

indicating that the chosen driving factors had a 

limited impact on this sub-model. Overall, the 

accuracy rates and skill measures reflect the degree to 

which driving factors influence land cover change 

(Gibson et al. 2018).

 This research produced the 2023 LULC prediction 

map by calculating the transition probability matrix 

from the 2016 and 2020 LULC maps. This matrix 

quantified the likelihood of each LULC class 

transitioning into another, forming the basis for 

simulating and validating the 2023 predictions. The 

outcomes of the prediction model were deemed valid, 

evidenced by a Kappa accuracy of 0.84, which falls 

within the excellent category. This result aligns with 

the recommendation from Leta et al. (2021) that a 

prediction model can be considered validated when 

the Kappa value surpasses 0.70. Following the 

Table 4. Bulk density and carbon content of peat soil

No. Peat depth (m)

1
2
3
4
5

0 - < 1
1 - < 2
2 - < 3
3 - < 6

≥ 6

Bulk density (gr/cc) Carbon content (%C)

0.2794
0.2794
0.2794
0.1716
0.1716

27.74
28.55
29.75
34.18
38.20

Source: Yunardy (2015)
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validation process, the model was employed to 

forecast the 2030 LULC map, illustrated in Figure 6.

LULC Change Analysis of 2016, 2023, and 2030 Data

 The three largest LULC types in Siak Regency were 

plantations, peat swamp forest closed-canopy, and 

Acacia plantation forest as presented in Figure 7. 

Plantations represented the most extensive land use, 

expanding significantly from 304,622 ha (37%) in 2016 

to 369,326 ha (45%) in 2023 and were projected to 

reach 376,248 ha (46%) by 2030. This rapid growth 

reflected different developmental activities in the 

sector by private companies, partnerships, plasma 

programs, and self-managed systems (Hafni 2017). 

The area of peat swamp forest closed-canopy, a part of 

the largest LULC classes, showed a slight decrease over 

time while Acacia and Eucalyptus plantation forests 

expanded significantly. It was also observed that open 

areas and shrublands decreased substantially 

probably due to land fires. Moreover, most burned 

peatland areas since 2016 were unproductive lands, 

such as wet shrubs and open areas (Rossita et al. 2023).

Estimated Carbon Stocks in Different LULC

 Siak Regency has extensive peatlands that store 

significantly more carbon than mineral soils. In peat 

soils, carbon is distributed uniformly from the surface 

to the deeper layers, whereas in mineral soils, its 

concentration is primarily confined to the top 0-30 cm 

(Agus et al. 2011). A substantial portion of the carbon 

in peatlands is found in the soil (Verwer & Meer 2010), 

which makes these areas particularly vulnerable to 

carbon loss due to deforestation. The total carbon 

stocks in Siak Regency comprised approximately 5% 

plant biomass and 95% soil organic carbon. 

 Peat swamp forests with a closed canopy had the 

31

(a) Cramer's V = 0.13 (b) Cramer's V = 0.05

(c) Cramer's V = 0.17    (d) Cramer's V = 0.13

(e) Cramer's V = 0.18  (f) Cramer's V = 0.09

(g) Cramer's V = 0.04             (h) Cramer's V = 0.16

(i) Cramer's V = 0.23             (j) Cramer's V = 0.35

Figure 5. The maps of LULC change's driving factors 

Table 5. Accuracy rate and skill measure of transition sub-model

No. 

1
2
3
4
5
6

Deforestation
Degradation
Ecosystem enhancement
Reforestation
Succession
Agriculture/plantation

Transition sub-model x̄ Accuracy rate (%) x̄ Skill Measure

66.42%
71.44%
72.52%
68.46%
71.33%
65.98%

0.59
0.68
0.54
0.63
0.66
0.42

Figure 6. The predicted 2030 LULC map
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highest carbon stocks despite covering a smaller area 

than plantations due to their greater carbon density. 

The trend was possible because high-density forests 

exhibited the most significant carbon density among 

all LULC types (Warren et al. 2017; Verma et al. 2024). 

In 2016, total carbon stocks reached approximately 

1,232.52 MtC, slightly decreasing to 1,232.12 MtC by 

2023, but they are projected to rise to 1,232.27 MtC by 

2030.  Land use and land cover (LULC) changes have 

decreased total carbon stocks between 2016 and 2023. 

As illustrated in Figure 8, the most significant losses in 

carbon stocks during this period occurred in 

shrubland and peat swamp forests characterized by 

medium canopy cover. While carbon stocks 

experienced increases in peat swamp forests with 

closed canopies, Acacia plantation forests, and other 

plantations, these gains were insufficient to 

counterbalance the losses, leading to an overall 

reduction in total carbon stocks by 2023 compared to 

2016. Nevertheless, projections indicate a net increase 

in carbon stocks from 2023 to 2030. The deforestation 

of peat swamp forests closed-canopy has contributed 

to the decline in carbon stocks. However, the growth of 

Acacia and other plantations was projected to lead to a 

higher total carbon stock by 2030.

32 33

Figure 7. LULC area of Siak Regency (Dlf = Dryland forest; Mf = Mangrove forest; Psf = Peat swamp forest; Aca Plt = 
Acacia Plantations; Eucy Plt = Eucalyptus Plantations; OA = open area; Pf = Paddy field; S = Shrubs).

Figure 8. Estimated carbon stocks in different LULC (Dlf = Dryland forest; Mf = Mangrove forest; Psf = Peat swamp 
forest; Aca Plt = Acacia Plantations; Eucy Plt = Eucalyptus Plantations; OA = open area; Pf = Paddy field; S = Shrubs).

CO  Emission from Green Siak Policy Implemen-2

tation

 LULC changes, particularly the conversion of 

forested areas to non-forest uses, have significantly 

contributed to CO₂ emissions, exacerbating global 

warming and climate change. These emissions were 

linked to carbon stock loss in vegetation and peat 

decomposition. Research findings indicate that net 

emissions in Siak Regency averaged 1.404 MtCO₂e per 

year from 2016 to 2023, as illustrated in Figure 9. This 

value was substantially higher than the 0.23 MtCO₂e 

per year estimated for the same timeframe by Global 

Forest Watch (2024). Due to the absence of a specific 

greenhouse gas (GHG) emissions baseline for Siak 

Regency, this study adopted the GHG reduction target 

set for Riau Province, 102.58 MtCO₂e per year based on 

the 2018 baseline (Governor of Riau, 2022). The 

regency aims to reduce GHG emissions by 22.7% by 

2030, translating to a reduction of 23.28 MtCO₂e 

annually.

 The findings indicated that CO₂ sequestration 

predominantly occurred in plantations, Acacia 

plantation forests, peat swamp forests closed-canopy, 

and Eucalyptus plantation forests from 2016 to 2023. 

In contrast, other LULC types were associated with 

CO₂ emissions (see Figure 9). The decline in 

vegetation resulted in CO₂ emissions from 

aboveground carbon stocks and soil, particularly in 

peatland, likely due to various activities, including 

land clearing, drainage, peat fires,  and the 

decomposition of peat organic matter (Hayati et al. 

2022). The projected net annual CO₂ emissions 

between 2023 and 2030 are estimated at 1.398 MtCO₂e, 

indicating a slight decline from the 1.404 MtCO₂e 

recorded between 2016 and 2023. Furthermore, the 

Green Siak scenario anticipates that the Siak Regency 

will achieve a reduction in annual CO₂ emissions at a 

rate of 0.006 MtCO₂e by 2030. This research indicates 

that land use and land cover (LULC) changes in the 

forestry and peatland sectors could contribute to a 

carbon emission reduction of approximately 0.03% of 

the overall targeted reduction of 22.7%. 

 The projection indicated that from 2023 to 2030, 

the loss of peat swamp forests with closed canopies 

resulted in the highest CO  emissions with an 2

estimated output of 22.05 MtCO e per year, as 2

illustrated in Figure 10. In contrast, the most 

significant CO  sequestration during this timeframe, 2

totaling 22.02 MtCO e per year, was attributed to 2

plantations. However, despite their potential for 

carbon sequestration, expanding plantation areas, 

particularly on peatland, raised environmental 

concerns. Practices such as burning, logging, 

drainage, and fertilization associated with peatland 

Figure 9. LULC Change and CO2 emission in 2016-2023 (Dlf = Dryland forest; Mf = Mangrove forest; Psf = Peat swamp 
forest; Aca Plt = Acacia Plantations; Eucy Plt = Eucalyptus Plantations; OA = open area; Pf = Paddy field; S = Shrubs).
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highest carbon stocks despite covering a smaller area 
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all LULC types (Warren et al. 2017; Verma et al. 2024). 
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counterbalance the losses, leading to an overall 
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in carbon stocks from 2023 to 2030. The deforestation 

of peat swamp forests closed-canopy has contributed 
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Acacia and other plantations was projected to lead to a 

higher total carbon stock by 2030.
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clearing accelerated the decomposition of soil organic 

matter, consequently leading to increased CO  2

emissions (Hayati et al. 2022). This finding aligned 

with the observations of Krisnawati et al. (2015), which 

indicated that disturbances in peat swamp forests can 

exacerbate soil organic carbon losses, further 

contributing to emissions over time.

Conclusion

 In conclusion, this research revealed notable 

changes in LULC over time, contributing to gains and 

losses in carbon stocks and CO  emissions. The 2

projections indicated that Siak Regency achieved only 

a modest 0.03% of the targeted carbon emissions 

reduction by 2030. The Siak government needs to 

implement targeted land management strategies to 

achieve more significant carbon reduction goals and 

re-evaluate the emissions reduction targets, as current 

projections highlight a substantial disparity between 

the anticipated and actual outcomes.
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Figure 10. Projection of LULC change and CO2 emission in 2023-2030 (Dlf = Dryland forest; Mf = Mangrove forest; Psf = Peat swamp 
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clearing accelerated the decomposition of soil organic 

matter, consequently leading to increased CO  2

emissions (Hayati et al. 2022). This finding aligned 

with the observations of Krisnawati et al. (2015), which 

indicated that disturbances in peat swamp forests can 

exacerbate soil organic carbon losses, further 

contributing to emissions over time.

Conclusion

 In conclusion, this research revealed notable 

changes in LULC over time, contributing to gains and 

losses in carbon stocks and CO  emissions. The 2

projections indicated that Siak Regency achieved only 

a modest 0.03% of the targeted carbon emissions 

reduction by 2030. The Siak government needs to 

implement targeted land management strategies to 

achieve more significant carbon reduction goals and 

re-evaluate the emissions reduction targets, as current 

projections highlight a substantial disparity between 

the anticipated and actual outcomes.
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