
 

ABSTRACT 
A sediment community is vital for the health of the surrounding community. Mi-
crobes play an essential role in chemical cycling. Meanwhile, diatoms, unicellular 
photosynthetic algae found in the water bodies and sediments, are used as water 
bioindicators for their fast responses to changes in water quality. Assessing the sed-
iment community is crucial to understanding ecosystem dynamic. With the newest 
technology in DNA identification, this research aims to identify the community in 
the Balekambang Lake, Dieng Plateau, Central Java, Indonesia. This preliminary 
study tested the Environmental DNA (eDNA) Metabarcoding method to determine 
the eukaryotes in the sediment community. This study utilized the High-
Throughput Sequencing method to massively identify the organism communities in 
the sediment, targeting the 18S rRNA gene. This study captured millions of se-
quences, including Eukaryota, Excavata, Amoebozoa, Opisthokonta, Rhizaria, and 
Alveolata supergroups. This method identified 14 genera and 13 species of multi-
cellular and unicellular organisms from the Balekambang Lake sediment samples. 
Although this study could not identify more organism taxa due to a high number of 
"unidentified" groups in the sampling area, the results show the importance of the 
eDNA Metabarcoding technique for biodiversity assessment in the sediments.  
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INTRODUCTION 
Freshwater sediments store high levels of biodiversity and provide organic 
substances for the sustainability of freshwater ecosystems and their surround-
ings. Microorganisms, including bacteria and invertebrates such as insects, 
nematodes, and crustaceans, generally dominate sediments (Sun et al. 2018). 
The composition of organisms in sediment can be used as a bioindicator for 
the sediment. Some taxa typically used as bioindicators are bacteria, nema-
todes, arthropods, and diatoms. Bacteria serve a bioindicators of biological, 
physical, and chemical of the soil. Soil condition and health are generally 
characterised by diverse soil microbiomes (Ray et al. 2020; Santos & Olivares 
2021). Nematodes and arthropods are usually used as indicators of soil health 
based on their abundance and diversity in the soil (Menta & Remelli 2020). 
Diatoms are also often used in waters as bioindicators of water quality be-
cause they are sensitive to changes in water conditions (Masouras et al. 2021). 

The dynamic nature of sediment ecosystems in freshwater environ-
ments highlights the need for rapid data assessment to see the diversity and 
changes in the ecosystem (Stefanidis & Papastergiadou 2024). The silting of 
lakes is an inevitable consequence of sedimentation (Hauer et al. 2018). Typi-
cally, sediments from rivers and streams are transported into the lake, mov-
ing through dense bottom currents, intermediate layers, and surface flows. 
However, when there is an excessive influx of terrestrial sediments, it can 
lead to the formation of a fluviolacustrine delta (Vonk et al. 2016). Lake sedi-
ments play a crucial role in the lake ecosystem, serving as natural archives 
that record environmental changes in the catchment area. Land-use modifica-
tions are well documented within these sediments, which can be analysed us-
ing multiple indicators, much like entries in a diary (Soeprobowati et al. 
2021). 

Research on the sediment biodiversity from the freshwater ecosystem in 
Indonesia is mainly done with traditional methods: morphological-based iden-
tification. Sediment’s diatom biodiversity has been studied from Rawapening 
Lake (Soeprobowati et al. 2012), Warna Lake (Soeprobowati et al. 2018), 
Pengilon Lakes (Sari et al. 2021), Galela Lake (Soeprobowati et al. 2023), Ce-
bong Lake (Soeprobowati et al. 2022; Putri et al. 2023), Bengawan Solo, 
Brantas (Andriyono et al. 2023) and Balekambang Lake (Soeprobowati et al. 
2023). The conventional method of identifying diatom species using a light 
microscope is time-consuming, as it requires examining a minimum of 300 
frustules for accurate analysis (Soeprobowati et al. 2016). Therefore, applying 
eDNA and metabarcoding is a promising method for environmental assess-
ment (Bailet 2020; Gregersen et al. 2023).  

Molecular research in Indonesia is still considered expensive—for ex-
ample, freshwater diatom data. Although diatoms are key species determining 
water health, the diatom molecular database from Indonesia is still limited. 
Research using a molecular approach, such as DNA Barcoding, is currently 
being developed because it provides a fast and massive method for detecting 
organisms from the environment or identifying cryptic species (Andriyono et 
al. 2020; Joesidawati et al. 2023). Newer methods with environmental DNA 
can also detect the presence of organisms without having to see the organ-
isms directly. This is important because some essential environmental organ-
isms are complicated to detect (Kelly et al. 2016; Kelly et al. 2017). 

Environmental DNA (eDNA) is one of the most adopted methods used 
by ecologists to assess the targeted taxa in the environment (Lim et al. 2016; 
Bailet et al. 2020). The amplicon-based method (DNA Metabarcoding) in 
eDNA utilizes the High Throughput Sequencing (HTS) approach. NGS al-
lows a massive and cheaper way to sequence millions of small DNA frag-
ments to identify the community structure and abundance directly from envi-
ronmental samples (Madduppa et al. 2021). Additionally, several studies have 
successfully implemented eDNA to detect diatom biodiversity through sedi-
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ment samples (Kutty et al. 2022; Gregersen et al. 2023). 
This is the preliminary study to test the eDNA Metabarcoding method 

in the freshwater lake community in Central Java. Indonesia. This study aims 
to identify the eukaryotic community in the Balekambang Lake, Dieng Plat-
eau, Central Java, Indonesia. In future research, this method will be used as an 
additional approach to assessing the sediment community in freshwater, 
brackish, and marine ecosystems in Indonesia. 

 
METHODS 
Field Sampling 
Samples were collected from Balekambang Lake, in the Dieng Plateau, Cen-
tral  Java,  Indonesia on July 26,  2022 (sampling coordinatesa -
7.2077891172104955, 109.90839964907225). Ten grams of surface sediment 
were collected using a sterile spatula and preserved in 10 mL 96 % ethanol 
(Persaud et al. 2021). Four samples (sample ID: S2006, S2007, S2008, and 
S2009) were collected from four sampling points (Figure 1) in Telaga 
Balekambang, Dieng. The sampling coordinates are -7.207655, 109.908093 
(S2006), -7.207648, 109.908129 (S2007), -7.207614, 109.908325 (S2008) and -
7.207634, 109.908399 (S2009). The samples were stored in a cool box and 
transported to Diponegoro Biodiversity Project Laboratory at Laboratorium 
Terpadu, Universitas Diponegoro, Semarang, Central Java. 

 

 
Figure 1. Map of the sampling location in Balekambang Lake, in Dieng Plateau, 
Central Java, Indonesia on July 26, 2022 

 
Genetic Data Preparation 
A total of 0.25 grams of sediment was extracted using Quick-DNA™ Fecal/
Soil Microbe MiniPrep Kit from ZymoBIOMICS™ following the extraction 
protocol. Thirty microlitres (uL) of DNA extraction were sent to sequencing 
facility for library preparation and a sequencing using the NGS platform. The 
18S rRNA genes were targeted using V4_18SNext.For and V4_18Snext.Ref 
primers (Manzari et al. 2015) and sequenced with MiSeq Illumina platform. 
Only four (S2006, S2007, S2008, and S2009) out of five samples were success-
fully sequenced and continued into bioinformatic analysis steps.  

 
Data Analysis 
Forward and reverse FASTQ data were merged, primers were removed, qual-
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ity was filtered and analysed using QIIME2 version 2019.1.0. (Quantitative 
Insights into Microbial Ecology 2 program, https://qiime2.org/). The Divi-
sive Amplicon Denoising Algorithm 2 (DADA2) software, integrated into 
QIIME2, was used to filter, trim, de-noise, merge the data, and remove the 
chimeric sequences using the consensus method (Callahan et al. 2016). The 
ASVs (Amplicon Sequence Variants) were produced by training a feature clas-
sifier in QIIME2 against the PR2 database (Guillou et al. 2013), adopting a 
default confidence threshold of 0.7. The taxonomic composition of each sam-
ple was summarized using phyloseq (McMurdie & Holmes 2013) in RStudio (R 
Development Core Team). The ggplot2 (Wickham et al. 2016) in RStudio (R 
Development Core Team) was used to generate stacked bar plots summariz-
ing taxonomic composition and sequence abundance based on the total abun-
dance in the samples. For each sample from each location, we used http://
bioinformatics.psb.ugent.be/webtools/Venn/ to create a set of Venn dia-
grams to determine how many ASVs were shared between sampling loca-
tions. The rarefaction curves were created with the Ranacapa package using 
the grade command (Kandlikar et al. 2018).  

 
RESULTS 
A total of 113,889 reads were obtained from this study. The mean of the read 
per sample is 28,472.25 reads, with a total of 145 ASVs. The reads range from 
1,939 to 51,172 sequences per sample. Samples were then rarefied to an equal 
number of reads (1,939 reads) to minimize bias in data analysis. At the end, 
7,756 reads and 120 ASVs were used for downstream analysis. 

The taxa composition based on read abundance shows a slightly differ-
ent composition between the four samples (Figure 2). Overall, six super-
groups were identified, namely Eukaryota, Excavata, Amoebozoa, Opistho-
konta, Rhizaria, Alveolata, and an unidentified group. Excavata were the 
dominant taxa in three samples (S2007, S2008, and S2009). Meanwhile, a 
sample with ID S2006 shows the dominance of Opisthokonta. 

 

Figure 2. A bar plot illustrating the taxonomic composition based on the read abundance of eukaryotic taxa from 
each sample. The plot represents the taxonomic hierarchy at different levels: (A) Phylum, (B) Class, (C) Order, and 
(D) Family.  

https://qiime2.org/)
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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At the species level, sample S2006 was dominated by human DNA 
(Homo sapiens) comprising approximately 20 % of the total reads across all 
samples and 80 % of reads in the S2006 sample alone. The other three sam-
ples, S2007, S2008, and S2009 were dominated by Tritichomonas muris 
(Family Tritichomonadidae). The other dominated taxa are Gregarines sp. and 
Candida apicola. 

The study identified 14 different genera (Figure 3, Table 1.) and identi-
fied 13 species (Tritrichomonas muris, Candida apicola, Gregarines sp., Gregarina 
cloptoni, Ophryoscolex sp., Entodinium sp., Cyrtolophosididae sp., Homo sapiens, 
Candida tropicalis, Isotricha prostoma, Distolabrellus veechi, Ripella sp., Haplomyxa 
saranae) and unidentified group. Sample S2006 was dominated by the Homo 
genus, with an unidentified group comprising 212 reads (11 % of the total 
sample reads). Meanwhile, sample S2007 was dominated by the Tritrichomo-
nas and Gregarines genera (67 and 15 % of reads from each total sample reads, 
respectively). The Tritrichomonas genus also dominated samples S2008 and 
S2009. However, sample S2009 also has a dominant Candida genus and an 
Unidentified genus (25 and 11 % of reads from each sample reads, respective-
ly). 

 

 
Figure 3. A bar plot showing the taxonomic composition based on the read abun-
dance of eukaryotic taxa from each sample. The plot represents the taxonomic hier-
archy at two levels: (A) Genus and (B) Species. 
 

Table 1. The list of species present in each sampling location is from four eDNA 
Metabarcoding data from Dieng Plateau, Central Java, Indonesia. 

 

Species name 
Presence at ID Sample 

S2006 S2007 S2008 S2009 

Candida apicola Yes Yes Yes Yes 

Candida tropicalis     Yes Yes 

Cyrtolophosididae sp.   Yes    

Distolabrellus veechi   Yes   Yes 

Entodinium sp.   Yes Yes Yes 

Gregarina cloptoni       Yes 

Gregarines sp.   Yes Yes Yes 

Haplomyxa saranae Yes       

Homo sapiens Yes Yes Yes   

Isotricha prostoma   Yes  Yes 

Ophryoscolex sp.   Yes Yes Yes 

Ripella sp.       Yes 

Tritrichomonas muris   Yes Yes Yes 

Eukaryota sp. Yes  Yes   

Unidentified Yes Yes Yes Yes 

Total Species* 3 9 7 10 

* Exclude Unidentified and Eukaryota sp.     
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Rarefaction, Alpha diversity, and Venn Diagram 
The rarefaction curve of the 18S rRNA amplicons indicates that none of the 
samples reached a plateau (Figure 4), suggesting that additional sequencing 
depth is required to capture the full diversity of the amplified taxa. 

Sample S2006 has the highest number of ASVs (41) but the lowest taxo-
nomic diversity, with only three identified species: Candida apicola, Haplomyxa 
saranae, and Homo sapiens. Haplomyxa saranae species were only found in the 
S2006 sample. The majority of reads in sample S2006 were identified as Homo 
sapiens (1,583 reads or 82 % of the total sample reads). The study also identi-
fies nine and seven species from samples S2007 and S2008, respectively. Sam-
ple S2009 has the highest number of identified species (10 species). Species 
Gregarina cloptoni and Ripella sp. were only found in sample S2009. 

The Venn diagram shows that only one ASV (Candida apicola) was 
shared among all samples (Figure 5). Sample S2006 had the highest number 
of unique ASVs (37 ASVs), followed by sample S2009 with 24, S2007 with 23, 
and S2008 with 21. 

 

 
Figure 4. Rarefaction plot for each of the samples examined in this study. Species 
richness (left axis) plotted against sequencing depth (bottom axis).  

 

 
Figure 5. The Venn diagram illustrates the number of unique and shared Amplicon 
Sequence Variants (ASVs) among four samples. 
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DISCUSSION 
The eukaryotic community in sediment plays a vital role in maintaining eco-
system health. Eukaryotes such as arthropods, apicomplexans, and diatoms 
are usually used as bioindicators and have fast responses to changes in the 
water quality. They play crucial roles in nutrient cycling, habitat provision-
ing, and serving as a food source for numerous organisms (B-Béres et al. 
2023). Diatoms are found in both freshwater and marine environments, but 
they belong to different species. Freshwater diatoms differ from marine dia-
toms in terms of size, silica content, and species composition, reflecting the 
distinct environmental conditions in which they thrive (Litchman et al. 2009). 
Freshwater diatoms are also beneficial to see the past condition of the fresh-
water ecosystem (paleolimnology). The eukaryotic communities in sediment 
were identified and counted for morphology and abundance under a micro-
scope. Unfortunately, despite many estimated extant species, our knowledge 
of this diverse biodiversity remains limited (Mann & Vanormelingen 2013). 
Currently, molecular approaches, such as DNA metabarcoding, provide a 
powerful tool for investigating unknown eukaryotic diversity and expanding 
our understanding of their distribution patterns (Juhel et al. 2022). The 
eDNA Metabarcoding method provides both species identification and read 
abundance data, which can be used to predict the dominance of specific taxa in 
the ecosystem (Rees et al. 2014; Beng & Corlett 2020; Andriyono et al. 2021; 
Garcia-Vazquez et al. 2021; Cahyani et al. 2024). 

The utilization of the 18S rRNA gene as a marker for single-cell eukar-
yotes has been reported by several studies including diatoms (Evans et al. 
2007; Pawlowski et al. 2016; Bailet et al. 2020), marine protists in Indonesian 
waters (Cahyani 2021), fish (Kumar et al. 2022), Coral-Zoothanthella 
(Shinzato et al. 2018) and fungi (Quandt et al. 2023). The V4 region of the 
18S rRNA gene has a great potential to identify diatoms and other protist 
sequences (Zimmermann et al. 2015). However, the choice of genetic markers 
and database availability is always a challenge.  

One interesting taxon captured by the eDNA Metabarcoding method is 
the Haplomyxa saranae. This species is a new naked freshwater foraminifer, 
identified in 2014 (Dellinger et al. 2014). This is an exciting finding and 
needs to be explored since Balekambang Lake is situated on the Dieng Plat-
eau, with temperature ranges from 12-20 °C during the day (Fahma et al. 
2024).  

Agricultural fields, such as potatoes and other vegetables, surround the 
Balekambang Lake (Hakim et al. 2014). This could be why this study 
found Distolabrellus veechi, a nematode species usually found in agricultural 
soil (Bhat et al. 2020). The ecosystem surrounding the sampling area can also 
be the reason that this study found a dominant Candida taxon (Candida apico-
la and candida tropicalis). Candida is a yeast family that might relate to some 
potato diseases (Zheng et al. 2021).  

Another dominant taxonomic group found in this study is Protozoa. 
This protozoan group consists of several species, Cyrtolophosididae sp., En-
todinium sp., Isotricha prostoma, Ophryoscolex sp., Ripella sp., and Tritrichomonas 
muris. Most of these protozoans are found in the animal’s intestines as para-
sites (Jouany & Ushida 1999; Escalante et al. 2016). This finding could be re-
lated to the conditions around Balekambang Lake, an area of agriculture and 
animal husbandry (Fahma et al. 2024; Hakim et al. 2014). 

The eDNA Metabarcoding used in this study can capture hundreds of 
sequences, including Excavata, Amoebozoa, Opisthokonta, Rhizaria, and Al-
veolata supergroups. This method is able to identify 14 genera and 13 species 
from the Balekambang Lake sediment samples. In future studies, some things 
need to be improved, including the sampling and preservation technique and 
the bioinformatic analysis. Nevertheless, this study hopes to provide prelimi-
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nary data on how important the eDNA Metabarcoding technique comple-
ments the morphological identification of eukaryotes including protists in the 
sediment. 

The dynamics of sedimentary eDNA may be influenced by sediment 
substrates, as it is believed that DNA adsorption is affected by variations in 
surface area corresponding to particle size (Barnes et al. 2021). Sediments 
help slow down biologically driven DNA decay by adsorbing both DNase en-
zymes and DNA molecules, especially in low-oxygen environments such as 
deeper sediment layers. Consequently, sedimentary eDNA tends to have a 
longer lifespan compared to aqueous eDNA (Sakata et al. 2020). Sedimentary 
eDNA analysis has the potential to enhance future biomonitoring and ecolog-
ical studies by offering insights across different timescales, providing a broad-
er perspective on environmental changes (Sakata et al. 2020).  

The application of eDNA research for ecosystem assessment in sedi-
ments is a promising approach. Time efficiency, low price, and the large 
amount of data are some of the advantages of the eDNA assessment method 
(Foster et al. 2020). However, the challenges ahead are marker selection, sam-
ple preparation, and database availability (database gaps for unidentified taxa) 
(Elbrecht et al. 2017; Casey et al. 2021). Therefore, the use of eDNA should 
become a complement and not replace conventional methods (such as mor-
phological approaches) (Pereira et al. 2021).  

This study provides an initial exploration of eDNA application in fresh-
water ecosystems, with a particular focus on freshwater sediments. Despite 
challenges, such as limited database availability and the need for improved 
sample processing techniques, it offers a promising method for rapid data col-
lection. The findings from this study contribute to scientific knowledge and 
hold significant potential for conservation and ecosystem management efforts. 

 
CONCLUSION 
This research serves as an example to show how eDNA with the 18S rRNA 
marker can be used to assess eukaryotes in sediment and analyse the diversity 
of the sediment ecosystem in Balekambang Lake, Dieng, Central Java. This 
study identifies various taxa including nematodes, foraminifera, yeast and 
protozoan. Some of the dominant taxa, such as Distolabrellus veechi, Candida 
apicola, and Candida tropicali, are generally associated with conditions around 
lakes which are dominated by agriculture. This research provides a basic da-
tabase for lake management in Balekambang, Dieng, such as the diversity and 
richness of the sediment taxa that can reveal the conditions of the surround-
ing environment and the changes it undergoes over time, offering valuable 
insights into ecosystem health and dynamics.  
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