Exploration the Potency of Copper and Dyes Multi-Resistant of Indigenous Bacteria Isolated from Cikijing River, West Java

  • Wahyu Irawati Department of Biology, Faculty of Education, Universitas Pelita Harapan. Jl.M.H. Thamrin Boulevard 1100, Lippo Karawaci, Tangerang 15811, Banten, Indonesia https://orcid.org/0000-0002-5182-040X
  • Reinhard Pinontoan Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan. Jl.M.H. Thamrin Boulevard 1100, Lippo Karawaci, Tangerang 15811, Banten, Indonesia https://orcid.org/0000-0002-9245-7360
  • Triwibowo Yuwono Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada. Bulaksumur, Sleman 55281, Yogyakarta, Indonesia, Phone: 0811257379 https://orcid.org/0000-0002-0180-6132
  • Indah Sofiana Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development. Jl. Tentara Pelajar 3A, Bogor 16111, West Java, Indonesia https://orcid.org/0000-0003-3089-5784
  • Valentine Lindarto Dian Harapan Lippo Village High School, Jl. Mentawai No. 201, Lippo Karawaci, Tangerang 15138, Banten, Indonesia
  • Dwi Ningsih Susilowati Research Center for Horticulture, Research Organisation for Agriculture and Food, National Research and Innovation Agency. Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911, West Java, Indonesia
Keywords: Bacteria, Cikijing River, Copper, Decolorization, Dye

Abstract

Various types of textile dye have been reported to contaminate the Cikijing River, West Java, Indonesia due to its location within the industrial region of Rancaekek District. It has been understood that certain bacterial species develop copper resistance and dye decolourisation as a mechanism of stress adaptation. The study aims at isolating and characterising copper and dye resistance as well as decolourisation ability of bacteria isolated from the Cikijing River. Copper-resistant bacteria were isolated using a series dilution method on Luria Bertani media supplemented with the addition of 1-10 mM CuSO4. Purified bacterial isolates were then tested for copper resistance onto LB agar medium supplemented with CuSO4 concentrations ranging from 0 mM to 20 mM and decolourisation of various dyes. A total of 59 copper-resistant bacteria were successfully isolated, nine of them showed the highest copper resistance with a MIC value from 11 mM up to 16 mM CuSO4 and resistance to   4 types of dyes up to 700 ppm. The 16S rDNA analysis showed that the nine isolates were Klebsiella sp., Klebsiella pneumoniae, Lysinibacillus boronitolerans, Lysinibacillus fusiformis, Bacillus proteoliticus, Pseudomonas stutzeri, Klebsiella variicola, Citrobacter freundii, and Klebsiella variicola. Out of nine isolates, five were found resistant to 5 mM CuSO4 and decolourise Methylene Blue, Congo Red, and Basic Fuchsine dyes at a maximum concentration of 700 ppm.

References

An et al., 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotech Let., 24(12), pp.1037-1040. doi: 10.1007/s13213-014-0801-7.

Argudín, M.A., Hoefer, A. & Butaye, P., 2019. Heavy metal resistance in bacteria from animals. Res Vet Sci., 122, pp.132-147. doi: 10.1016/j.rvsc.2018.11.007.

Ayangbenro, A.S. & Babalola, O.O., 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Env Res and Pub Health., 14(1), 94. doi: 10.3390/ijerph14010094.

Benhalima, L. et al., 2019. Antibacterial effect of copper sulphate against multi-drug-resistant nosocomial pathogens isolated from clinical samples. Pak J Med Scis., 35(5), 1322. doi: 10.12669/pjms.35.5.336.

Cavelle, J., 2013. A Political Ecology of the Citarum River Basin: Exploring “Integrated Water Resources Management" in West Java, Indonesia. Berkeley Undergrad Journal, 26(1), pp.86-107. doi: 10.5070/B3261016209

Cocconcelli, P.S. & Fontana, C., 2014. Bacteria. In Handbook of Fermented Meat and Poultry. Hoboken, New Jersey, USA: John Wiley & Sons, Ltd.

Fadhilah, R., Oginawati, K. & Romantis, N.A.Y., 2018. The pollution profile of Citarik, Cimande, and Cikijing Rivers in Rancaekek District, West Java, Indonesia. Indo J Urb Environ Technol., 2(1), pp.14-26. doi: 10.25105/urbanenvirotech. v2i1.3551.

Giachino, A. & Waldron, K.J., 2020. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molec Microbiol., 114(3), pp.377-390. doi: 10.1111/mmi.14522.

Irawati, W. et al., 2017. Heavy metal tolerance in indigenous bacteria isolated from the industrial sewage in Kemisan River, Tangerang, Banten, Indonesia. Biodiversitas, 18(4), pp.1481-1486. doi: 10.13057/biodiv/d180425.

Irawati, W. et al., 2019. Molecular and physiological characterization of indigenous copper-resistant bacteria from Cikapundung River, West Java, Indonesia. Biodiversitas, 20(2), pp.344-349. doi: 10.13057/biodiv/d200206

Irawati, W., Pinontoan, R. & Yuwono, T., 2020. Indigenous copper resistant bacteria isolated from activated sludge of water treatment plant in Surabaya, Indonesia. Biodiversitas, 2(2), pp.1215-1223. doi: 10.13057/biodiv/d211112.

Irawati, W. et al., 2021a. Indigenous multiresistant bacteria of Cupriavidus pauculus IrC4 isolated from Indonesia as a heavy metal bioremediation agent. Biodiversitas, 22(6), pp.3349-3355. doi: 10.13057/biodiv/d220641.

Irawati, W. et al., 2021b. Optimizing bioremediation: Elucidating copper accumulation mechanisms of Acinetobacter sp. IrC2 isolated from an industrial waste treatment center. Frontiers in Microbiol, 12, 713812. doi: 10.3389/fmicb.2021.713812.

Irawati, W. et al., 2022. Enterobacter hormaechei KIMS8 and Enterobacter cloacae KIMS10 isolated from Kapuas River, Kalimantan, Indonesia as indigenous multi-resistant bacteria to copper and dyes. Biodiversitas, 23(12), pp.6661-6668. doi: 10.13057/biodiv/d231265.

Irawati, W. et al., 2023. Exploration of indigenous copper and dye-resistant bacteria isolated from Citarum River, West Java, Indonesia. Biodiversitas, 20(2), pp.344-349. doi: 10.13057/biodiv/d240263.

Islam, M.M. et al., 2020. Heavy metal tolerant bacteria isolated and detected from the effluent of azaribagh Tannery Industry in Dhaka City. Bact Emp., 3(3), pp.14–19. doi: 10.36547/be.2020.3.3.14-19.

Jamee, R. & Siddique, R., 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. Eur J Microbiol Immunol., 9(4), pp.114-118. doi: 10.1556/1886.2019.00018.

Johnson, J.S. et al., 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Comm., 10(1), 5029. doi: 10.1038/s41467-019-13036-1.

Junqueira, J.C. et al., 2010. Antimicrobial photodynamic therapy: Photodynamic antimicrobial effects of malachite green on Staphylococcus, Enterobacteriaceae, and Candida. Photomed Laser Surg., 28 (Suppl 1), pp.S67-72. doi: 10.1089/pho.2009.2526.

Karim, M.R. et al., 2018. Heavy metals leaching behavior assessment of palm oil clinker. Sains Malay., 47(3), pp.523-530. doi: 10.17576/jsm-2018-4703-12.

Knop, M. et al., 2017. Copper is a cofactor of the formylglycine-generating enzyme. Chembiochem: A European journal of chemical biology, 18(2), pp.161–165. doi: 10.1002/cbic.201600359

Lu, L. et al., 2009. Production and synthetic dyes decolorization capacity of a recombinant laccase from Pichia pastoris. J Appl Microbiol., 107, pp.1149-1156. doi: 10.1111/j.1365-2672.2009.04291. x.

Mahardika, D.I. & Salami, I.R.S., 2012. Heavy metal pollution profiles of distribution in water stream and sediment river flow from leachate of Sari Mukti Landfill. J Tek Ling., 18(1), pp.30-42. doi: 10.5614/jtl.2012.18.1.4.

Mathivanan, K., Rajaram, R. & Balasubramanian, V., 2016. Biosorption of Cd (II) and Cu (II) ions using Lysin bacillus fusiformis KMNTT-10: Equilibrium and kinetic studies. Desalin Wat Treat., 57(47), pp.22429-22440. doi: 10.1080/19443994.2015.1129508.

Misal, S.A. et al., 2011. Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Proc Biochem., 46(6), pp.1264-1269. doi: 10.1016/j.procbio.2011.02.013.

Mustafa, G. et al., 2021. Biodegradation and discoloration of disperse blue-284 textile dye by Klebsiella pneumoniae GM-04 bacterial isolate. J King Saud U-Sci., 33(4), 101442. doi: 10.1016/j.jksus.2021.101442.

Nurlaila, I. et al., 2021. K-means clustering model to discriminate copper-resistant bacteria as bioremediation agents. Procedia Comp Sci., 179, pp.804-812. doi: 10.1016/j.procs.2021.01.068.

Pantjawati, A.B. et al., 2020. Water quality monitoring in Citarum River (Indonesia) using IoT (Internet of Things). J Eng Sci Technol., 15(6), pp.3661-3672.

Palanivel, T.M. et al., 2020. Bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil. J Env Manage., 253, 109706. doi: 10.1016/j.jenvman.2019.109706.

Prananda, Y., Taufik, F. & Widodo., 2017. Pollution detected innovation of hazardous and toxic Substance disposal by magnetic susceptibility method in Cikijing River, Rancaekek for testing water quality standards. AIP Conference Proceedings, 1861, 030039. doi: 10.1063/1.4990926

Ren, S. et al., 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol., 72(6), pp.1316-21. doi: 10.1007/s00253-006-0418-2.

Riyadi, B.S. et al., 2020. Environmental damage due to hazardous and toxic pollution: A case study of Citarum River, West Java, Indonesia. Int J Criminal Social., 9, pp.1844-1852. doi: 10.6000/1929-4409.2020.09.211.

Saratale, R.G. et al., 2009. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Biores Technol., 100(9), pp.2493-2500. doi: 10.1016/j.biortech.2008.12.013.

Sari, I.P. & Simarani, K., 2019. Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorb Sci Technol., 37(5-6), pp.492-508. doi: 10.1177/02636174198488.

Septiono, M.A. & Roosmini, D., 2015. Heavy metal distribution in water, sediment and fish at upper Citarum river and its potential exposure pathway to human. Proceedings of the 5th Environmental Technology and Management Conference.

Tkaczyk, A., Mitrowska, K. & Posyniak, A., 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci Tot Env., 717, 137222. doi: 10.1016/j.scitotenv.2020.137222.

Vardhan, K.H., Kumar, P.S. & Panda, R.C., 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq., 290, 111197. doi: 10.1016/j.molliq.2019.111197.

Victor, H. et al., 2020. Metabolite identification from biodegradation of congo red by Pichia sp. KnE Life Sci., 5(2), pp.102-110. doi: 10.18502/kls. v5i2.6443.

Wang, Y., Robison, T. & Wiatrowski, H., 2013. The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria. Biometals., 26, pp.1023-1031. doi: 10.1007/s10534-013-9679-2.

Wu, K. et al., 2022. Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway. Enzyme Microb Technol., 156, 109999. doi: 10.1016/j.enzmictec.2022.109999.

Xue, Q. et al., 2023. Copper metabolism in cell death and autophagy. Autophagy, 19(8), pp.2175–2195. doi: 10.1080/ 155486 27.2023.2200554

Zeng, J. & Han, G. 2020. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification. Ecotoxicol Environ Safety., 198, 110663. doi: 10.1016/j.ecoenv.2020.110663.

Zucca, P. et al., 2015. Fungal laccases as tools for biodegradation of industrial dyes. Biocatalysis., 1, pp.82-108. doi: 10.1515/boca-2015-0007.

Published
2025-01-20
How to Cite
Wahyu Irawati, Reinhard Pinontoan, Triwibowo Yuwono, Indah Sofiana, Valentine Lindarto and Dwi Ningsih Susilowati (2025) “Exploration the Potency of Copper and Dyes Multi-Resistant of Indigenous Bacteria Isolated from Cikijing River, West Java”, Journal of Tropical Biodiversity and Biotechnology, 10(1), p. jtbb12527. doi: 10.22146/jtbb.12527.
Section
Research Articles