A Streamlined Plant DNA Extraction Method with Liquid Nitrogen-Free Approach
Abstract
Molecular technique such as Polymerase Chain Reaction (PCR) is essential in various research fields. The amplification process of plant DNA can be challenging due to the presents of metabolites that can inhibit the polymerase eznyme, as well as expensive procedures or time-consuming laboratory work required. Most of the protocol involved liquid nitrogen, which is not always accessible, especially in laboratories with limited resources. Consequently, this study proposed an alternative protocol free from liquid-nitrogen usage, that was designed to be efficient in the DNA extraction from dry and fresh leaf samples across 40 plant species belonging to 27 different families. The DNA obtained from all the samples showed concentrations greater than 50 ng µL-1, with the quality indexes in the acceptable range (A260/280: 1.50-2.21, A260/230:0.60-2.20). The efficacy of this method was demonstrated by successful PCR amplification using rbcL primer, validating the DNA suitability. This protocol can be considered a good option to be used both with fresh and dried plant leaves. Moreover, the absence of liquid nitrogen usage in the protocol could decrease the laboratory cost considerably and turning it into a more easily replicable method to be used in laboratories with limited resources.
References
Abd Elkader, A.M. et al., 2022. Phytogenic compounds from avocado (Persea americana L.) extracts; antioxidant activity, amylase inhibitory activity, therapeutic potential of type 2 diabetes. Saudi Journal of Biological Sciences, 29(3), pp.1428–1433. doi: 10.1016/j.sjbs.2021.11.031.
Abdel-Latif, A. & Osman, G., 2017. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13, 1. doi: 10.1186/s13007-016-0152-4.
Aboul-Maaty, N.AF. & Oraby, H.A.-S., 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43, 25. doi: 10.1186/s42269-019-0066-1.
Afshar-Mohammadian, M., Rezadoost, M.H. & Fallah, S.F., 2018. Comparative analysis and innovation of a simple and rapid method for high-quality RNA and DNA extraction of kiwifruit. MethodsX, 5, pp.352–361. doi: 10.1016/j.mex.2018.03.008.
Ahari, H. et al., 2012. DNA extraction using liquid nitrogen in staphylococcus aureus. Iranian Journal of Fisheries Sciences, 11(4), pp.926–929.
Ahmed, A.F. et al., 2019. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), pp.299–305. doi: 10.1016/j.fshw.2019.07.004.
Amin, S. et al., 2020. Molecular identification of four medicinal plants using DNA barcoding approach from Chittagong, Bangladesh. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(3), pp.268–272. doi: 10.5455/jabet.2020.d134.
Anderson, L.L. et al., 2006. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 103(33), pp.12447–12450. doi: 10.1073/pnas.0605310103.
Antony-Babu, S. et al., 2013. An improved method compatible with metagenomic analyses to extract genomic DNA from soils in Tuber melanosporum orchards. Journal of Applied Microbiology, 115(1), pp.163–170. doi: 10.1111/jam.12205.
Arruda, S.R. et al., 2017. An optimized protocol for DNA extraction in plants with a high content of secondary metabolites, based on leaves of Mimosa tenuiflora (Willd.) Poir. (Leguminosae). Genetics and Molecular Research, 16(3), pp.1–9. doi: 10.4238/gmr16039063.
Asghar, U. et al., 2015. DNA Extraction from Insects by Using Different Techniques: A Review. Advances in Entomology, 03(04), pp.132–138. doi: 10.4236/ae.2015.34016.
Asy’ari Hasbullah, U.H. & Rini Umiyati, D., 2021. Antioxidant Activity and Total Phenolic Compounds of Arabica and Robusta Coffee at Different Roasting Levels. Journal of Physics: Conference Series, 1764, 012033. doi: 10.1088/1742-6596/1764/1/012033.
Bailey, D.W. et al., 2022. Effective strategies for isolating DNA from members of Asteraceae with high concentrations of secondary metabolites. BioTechniques, 72(3), pp.85–89. doi: 10.2144/btn-2021-0050.
Bartlett, J.M.S. & Stirling, D., 2003. A Short History of the Polymerase Chain Reaction. In PCR Protocols of Methds in Molecular Biology. New Jersey: Humana Press, pp. 3–6. doi: 10.1385/1-59259-384-4:3.
Bebber, D.P. et al., 2010. Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences of the United States of America, 107(51), pp.22169–22171. doi: 10.1073/pnas.1011841108.
Bezeng, B.S. et al., 2017. Ten years of barcoding at the African Centre for DNA Barcoding. Genome, 60(7), pp.629–638. doi: 10.1139/gen-2016-0198.
Bolker, B.M. et al., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), pp.127–135. doi: 10.1016/j.tree.2008.10.008.
de Almeida Araújo, C. et al., 2022. Fermentative profile, nutritional composition, and aerobic stability of elephant grass (Pennisetum purpureum Schum) and forage peanut (Arachis pintoi) mixed silages. Revista MVZ Cordoba, 27(3). doi: 10.21897/rmvz.2549.
De Campos, G.S. et al., 2017. High-quality total RNA isolation from melon (Cucumis melo L.) fruits rich in polysaccharides. Semina:Ciencias Agrarias, 38(4), pp.2201–2207. doi: 10.5433/1679-0359.2017v38n4p2201.
Chabi Sika, K. et al., 2015. A simple and efficient genomic DNA extraction protocol for large scale genetic analyses of plant biological systems. Plant Gene, 1, pp.43–45. doi: 10.1016/j.plgene.2015.03.001.
Clark, K.D. et al., 2015. Extraction of DNA by Magnetic Ionic Liquids: Tunable Solvents for Rapid and Selective DNA Analysis. Analytical Chemistry, 87(3), pp.1552–1559. doi: 10.1021/ac504260t.
Csaikl, U.M. et al., 1998. Comparative Analysis of Different DNA Extraction Protocols: A Fast, Universal Maxi-Preparation of High Quality Plant DNA for Genetic Evaluation and Phylogenetic Studies. Plant Molecular Biology Reporter, 16(1), pp.69–86. doi: 10.1023/A:1007428009556.
Demeke, T. & Jenkins, G.R., 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Analytical and Bioanalytical Chemistry, 396(6), pp.1977–1990. doi: 10.1007/s00216-009-3150-9.
Desjardins, P. & Conklin, D., 2010. NanoDrop Microvolume Quantitation of Nucleic Acids. Journal of Visualized Experiments, 45, 2565. doi: 10.3791/2565.
Dk, S. et al., 2023. Monstera deliciosa Liebem (Araceae): a review on its plant profile and pharmacological activities. Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value : 86, 87(9), pp.2455–0620.
Doyle, J.J. & Doyle, J.L., 1987. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19, pp.11–15.
Esfandani-Bozchaloyi, S., Sheidai, M. & Hassanzadeh Kalalegh, M., 2019. Comparison of DNA extraction methods from Geranium (Geraniaceae). Acta Botanica Hungarica, 61(3–4), pp.251–266. doi: 10.1556/034.61.2019.3-4.3.
Fazekas, A.J. et al., 2012. DNA Barcoding Methods for Land Plants. In DNA Barcodes. Methods in Molecular Biology, vol 858, pp. 223–252. Humana Press, Totowa, NJ. doi: 10.1007/978-1-61779-591-6_11.
Fernandes de Araújo, F. et al., 2021. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Research International, 139, 109904. doi: 10.1016/j.foodres.2020.109904.
Friar, E.A., 2005. Isolation of DNA from Plants with Large Amounts of Secondary Metabolites. Methods in Enzymology, 395, pp.3–14. doi: 10.1016/S0076-6879(05)95001-5
Galviz-Quezada, A. et al., 2019. Valorization of iraca (Carludovica palmata, Ruiz & Pav.) infructescence by ultrasound-assisted extraction: An economic evaluation. Food and Bioproducts Processing, 118, pp.91–102. doi: 10.1016/j.fbp.2019.08.016.
Gan, R.-Y. et al., 2018. Health Benefits of Bioactive Compounds from the Genus Ilex, a Source of Traditional Caffeinated Beverages. Nutrients, 10(11), 1682. doi: 10.3390/nu10111682.
Gómez, G.C. et al., 2012. Ethanolic extract from leaves of Bixa orellana L.: A potential natural food preservative. Interciencia, 37(7), pp.547–551.
Gonçalves, J. et al., 2020. Ayahuasca Beverages: Phytochemical Analysis and Biological Properties. Antibiotics, 9(11), 731. doi: 10.3390/antibiotics9110731.
Gupta, S.K., Kumar, A. & Hussain, S.A., 2013. Extraction of PCR-amplifiable DNA from a variety of biological samples with uniform success rate. Conservation Genetics Resources, 5(1), pp.215–217. doi: 10.1007/s12686-012-9772-9.
Haggag, M.I., 2022. Phytochemical profile for Cestrum nocturnum leaves ethanolic extract and isolation of a rare flavonoid using different chromatographic and spectroscopic techniques. Journal of Medicinal Plants Studies, 10(2), pp.143–150. doi: 10.22271/plants.2022.v10.i2b.1403.
Haider, N., 2011. Chloroplast-specific universal primers and their uses in plant studies. Biologia Plantarum, 55(2), pp.225–236. doi: 10.1007/s10535-011-0033-7.
Handy, S.M. et al., 2020. Suitability of DNA Sequencing Tools for Identifying Edible Seaweeds Sold in the United States. Journal of Agricultural and Food Chemistry, 68(52), pp.15516–15525. doi: 10.1021/acs.jafc.0c03734.
Harnelly, E., Thomy, Z. & Fathiya, N., 2018. Phylogenetic analysis of dipterocarpaceae in ketambe research station, Gunung leuser national park (Sumatra, Indonesia) based on rbcL and matK genes. Biodiversitas, 19(3), pp.1074–1080. doi: 10.13057/biodiv/d190340.
Hasan, S. et al., 2012. Optimization of DNA extraction from seeds and leaf tissues of Chrysanthemum (Chrysanthemum indicum) for polymerase chain reaction. Bioinformation, 8(5), pp.225–228. doi: 10.6026/97320630008225.
Healey, A. et al., 2014. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods, 10(1), 21. doi: 10.1186/1746-4811-10-21.
Heikrujam, J., Kishor, R. & Behari Mazumder, P., 2020. The Chemistry Behind Plant DNA Isolation Protocols. In Biochemical Analysis Tools - Methods for Bio-Molecules Studies. IntechOpen. doi: 10.5772/intechopen.92206.
Hendawy, S.F. et al., 2018. Growth, Yield and Chemical Composition of Essential Oil of Mentha piperita var. multimentha Grown Under Different Agro-ecological Locations in Egypt. Journal of Essential Oil Bearing Plants, 21(1), pp.23–39. doi: 10.1080/0972060X.2017.1423247.
Herrera-Calderon, O. et al., 2019. Antioxidant and Cytoprotective Effect of Piper aduncum L. against Sodium Fluoride (NaF)-Induced Toxicity in Albino Mice. Toxics, 7(2), p.28. doi: 10.3390/toxics7020028.
Hertentains, L.A. & Ruiloba, M.H., 2010. Arachis pintoi (mani forrajero), una leguminosa para contribuir al mejoramiento de la ganadería de Panamá 1st ed., Panamá: Instituto de Investigación Agropecuaria de Panamá.
Ho, V.T. et al., 2021. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. Journal of Genetic Engineering and Biotechnology, 19(1), 93. doi: 10.1186/s43141-021-00188-1.
Hollingsworth, P.M. et al., 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106(31), pp.12794–12797. doi: 10.1073/pnas.0905845106.
Hollingsworth, P.M., Graham, S.W. & Little, D.P., 2011. Choosing and using a plant DNA barcode. PLoS ONE, 6(5), e19254. doi: 10.1371/journal.pone.0019254.
Höss, M. & Pääbo, S., 1993. DNA extraction from pleistocene bones by a silica-based purification method. Nucleic Acids Research, 21(16), pp.3913–3914. doi: 10.1093/nar/21.16.3913.
Hwang, S.K. & Kim, Y.M., 2000. A Simple and Reliable Method for Preparation of Cross-Contamination-Free Plant Genomic DNA for PCR-Based Detection of Transgenes. Journal of Biochemistry and Molecular Biology, 33(6), pp.537–540.
Ijaz, S. et al., 2019. HPLC profiling of Mimosa pudica polyphenols and their non-invasive biophysical investigations for anti-dermatoheliotic and skin reinstating potential. Biomedicine & Pharmacotherapy, 109, pp.865–875. doi: 10.1016/j.biopha.2018.10.089.
Inglis, P.W. et al., 2018. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS ONE, 13(10), e0206085. doi: 10.1371/journal.pone.0206085.
Jamaludin, A. et al., 2020. An Effective CTAB Method for Isolation of CpDNA from Silica-Dried Frond Tissues of Several Tree Fern Species from Peninsular Malaysia. ICEMS2020 in conjunction with IPCSM2020.
Jan Kieleczawa, 2006. DNA Sequencing II: Optimizing Preparation and Cleanup. 2nd ed., Jones and Bartlett Publishers.
Jiménez-Escrig, A. et al., 2001. Guava Fruit ( Psidium guajava L.) as a New Source of Antioxidant Dietary Fiber. Journal of Agricultural and Food Chemistry, 49(11), pp.5489–5493. doi: 10.1021/jf010147p.
Jinlu, L. et al., 2013. A Modified CTAB Protocol for Plant DNA Extraction. Chinese Bulletin of Botany, 48(1), pp.72–78. doi: 10.3724/sp.j.1259.2013.00072.
Keselman, H.J., Othman, A.R. & Wilcox, R.R., 2016. Generalized linear model analyses for treatment group equality when data are non-normal. Journal of Modern Applied Statistical Methods, 15(1), pp.32–61. doi: 10.22237/jmasm/1462075380.
Khanam, Z. et al., 2015. Determination of polyphenolic content, HPLC analyses and DNA cleavage activity of Malaysian Averrhoa carambola L. fruit extracts. Journal of King Saud University - Science, 27(4), pp.331–337. doi: 10.1016/j.jksus.2015.01.004.
Khanuja, S.P.S. et al., 1999. Rapid Isolation of DNA from Dry and Fresh Samples of Plants Producing Large Amounts of Secondary Metabolites and Essential Oils. Plant Molecular Biology Reporter, 17, 74. doi: 10.1023/A:1007528101452.
Kim, D.-S. & Iida, F., 2023. Nutritional composition of Cassava ( Manihot esculenta ) and its application to elder-friendly food based on enzyme treatment. International Journal of Food Properties, 26(1), pp.1311–1323. doi: 10.1080/10942912.2023.2213410.
Kool, A. et al., 2012. Molecular identification of commercialized medicinal plants in Southern Morocco. PLoS ONE, 7(6), e39459. doi: 10.1371/journal.pone.0039459.
Korany, D.A. et al., 2022. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomedicine & Pharmacotherapy, 146, 112603. doi: 10.1016/j.biopha.2021.112603.
Kotchoni, S.O., Gachomo, E.W. & Jimenez-Lopez, J.C., 2011. A plant cocktail amenable for PCR-based genetic analysis in Arabidopsis thaliana. Molecular Biology Reports, 38(8), pp.5281–5284. doi: 10.1007/s11033-011-0677-6.
Kress, W.J. & Erickson, D.L., 2007. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE, 2(6), e508. doi: 10.1371/journal.pone.0000508.
Krishnan, S. et al., 2024. Cationic and anionic detergent buffers in sequence yield high-quality genomic DNA from diverse plant species. Analytical Biochemistry, 684, 115372. doi: 10.1016/j.ab.2023.115372.
Križman, M. et al., 2006. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta agriculturae Slovenica, 87(2), pp.427–433. doi: 10.14720/aas.2006.87.2.15122.
Labra, M. et al., 2001. Extraction and purification of DNA from grapevine leaves. Vitis, 40(2), pp.101–102.
Lear, G. et al., 2018. Methods for the extraction, storage, amplification and sequencing of dna from environmental samples. New Zealand Journal of Ecology, 42(1), 10. doi: 10.20417/nzjecol.42.9.
Lee, P.Y. et al., 2012. Agarose Gel Electrophoresis for the Separation of DNA Fragments. Journal of Visualized Experiments, 62, 3923. doi: 10.3791/3923.
Lee, Y.K. et al., 2003. A simple method for DNA extraction from marine bacteria that produce extracellular materials. Journal of Microbiological Methods, 52(2), pp.245–250. doi: 10.1016/S0167-7012(02)00180-X.
Lima, N.M. et al., 2020. Inga edulis fruits: a new source of bioactive anthocyanins. Natural Product Research, 34(19), pp.2832–2836. doi: 10.1080/14786419.2019.1591395.
Liu, D., 2024. Handbook of Molecular Biotechnology, Boca Raton: CRC Press. doi: 10.1201/9781003055211.
Lodhi, M.A. et al., 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reporter, 12(1), pp.6–13. doi: 10.1007/BF02668658.
Lucena-Aguilar, G. et al., 2016. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis. Biopreservation and Biobanking, 14(4), pp.264–270. doi: 10.1089/bio.2015.0064.
Mace, E.S., Buhariwalla, H.K. & Crouch, J.H., 2003. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Molecular Biology Reporter, 21(4), pp.459–460. doi: 10.1007/BF02772596.
Marín, D.V. et al., 2021. An optimized high-quality DNA isolation protocol for spodoptera frugiperda J. E. smith (Lepidoptera: Noctuidae). MethodsX, 8, 101255. doi: 10.1016/j.mex.2021.101255.
Matlock, B., 2015. Assessment of Nucleic Acid Purity. Thermoscientific Technical Bulletin NanoDrop Spectrophotometers.
Mavrodiev, E.V. et al., 2021. A new, simple, highly scalable, and efficient protocol for genomic DNA extraction from diverse plant taxa. Applications in Plant Sciences, 9(3), e11413. doi: 10.1002/aps3.11413.
Mayjonade, B. et al., 2016. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. BioTechniques, 61(4), pp.203–205. doi: 10.2144/000114460.
McKiernan, H.E. & Danielson, P.B., 2017. Molecular Diagnostic Applications in Forensic Science. In Molecular Diagnostics. Elsevier, pp. 371–394. doi: 10.1016/B978-0-12-802971-8.00021-3.
Ng’ang’a, R.N., 2019. Molecular and Morphological Identification of Plants Consumed by Yellow Baboons in Amboseli, Kenya. University of Nairobi.
Nguyen Thi, D.P. et al., 2021. Supramolecular Gels Incorporating Cordyline terminalis Leaf Extract as a Polyphenol Release Scaffold for Biomedical Applications. International Journal of Molecular Sciences, 22(16), 8759. doi: 10.3390/ijms22168759.
O’Neill, M. et al., 2011. Comparison of the TLDA with the nanodrop and the reference qubit system. Journal of Physics: Conference Series, 307, 012047. doi: 10.1088/1742-6596/307/1/012047.
Obregon, A.J., López, M.D. & Angeles, D., 2023. Nutritional and Bioactive Properties of Solanum Quitoense Lam: Native Fruit From The South American Andes. Journal of microbiology, biotechnology and food sciences, 13(4), e10386. doi: 10.55251/jmbfs.10386.
Olvera, S. et al., 2018. Comparison of four DNA extraction methods in Heliconia (Heliconia L.). African Journal of Biotechnology, 17(45), pp.1331–1338. doi: 10.5897/AJB2018.16481.
Parveen, I. et al., 2016. DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: Strengths and limitations. Planta Medica, 82(14), pp.1225–1235. doi: 10.1055/s-0042-111208.
Pathak, M.R., Mohamed, A.A.M. & Farooq, M., 2018. DNA Barcoding and Identification of Medicinal Plants in the Kingdom of Bahrain. American Journal of Plant Sciences, 09(13), pp.2757–2774. doi: 10.4236/ajps.2018.913200.
Paul, R. et al., 2019. Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano, 13, pp.6540–6549. doi: 10.1021/acsnano.9b00193.
Peñafiel, N. et al., 2019. A cost-effective protocol for total DNA isolation from animal tissue. Neotropical Biodiversity, 5(1), pp.69–74. doi: 10.1080/23766808.2019.1706387.
Pereira, J.C. et al., 2011. An efficient method for genomic DNA extraction from different molluscs species. International Journal of Molecular Sciences, 12(11), pp.8086–8095. doi: 10.3390/ijms12118086.
Pirie, M.D. et al., 2007. Ancient paralogy in the cpDNA trnL-F region in Annonaceae: Implications for plant molecular systematics. American Journal of Botany, 94(6), pp.1003–1016. doi: 10.3732/ajb.94.6.1003.
Porebski, S., Bailey, L.G. & Baum, B.R., 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), pp.8–15. doi: 10.1007/BF02772108.
Prance, G.T., 2001. Discovering the Plant World. Taxon, 50(2), pp.345–359. doi: 10.2307/1223885
Quandt, D. et al., 2004. Molecular evolution of the chloroplast trnL-F region in land plants. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, pp.13–37.
Quiñones, K.J.O. et al., 2024. Liquid-nitrogen-free CTAB DNA extraction method from silica-dried specimens for next-generation sequencing and assembly. MethodsX, 12, 102758. doi: 10.1016/j.mex.2024.102758.
Rezadoost, M.H., Kordrostami, M. & Kumleh, H.H., 2016. An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. 3 Biotech, 6(1), 61. doi: 10.1007/s13205-016-0375-0.
Ribeiro de Sousa, L.C. et al., 2019. UPLC-QTOF-MS Analysis of Extracts from the Leaves of <i>Pouteria caimito</i> (Sapotaceae) and Their Antioxidant Activity. Journal of Biosciences and Medicines, 07(03), pp.92–101. doi: 10.4236/jbm.2019.73009.
Rogers, S.O. & Bendich, A.J., 1988. Extraction of DNA from plant tissues. Plant Molecular Biology Manual, 10, pp.89–99. doi: 10.1007/978-94-017-5294-7_6.
Ruas, R. de B., Costa, L.M.S. & Bered, F., 2022. Urbanization driving changes in plant species and communities – A global view. Global Ecology and Conservation, 38, e02243. doi: 10.1016/j.gecco.2022.e02243.
Saffoon, N. et al., 2014. In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of Codiaeum Variegatum found in Bangladesh. Advanced Pharmaceutical Bulletin, 4(Suppl 2), pp.533–541. doi: 10.5681/apb.2014.079.
Sahu, S.K., Thangaraj, M. & Kathiresan, K., 2012. DNA Extraction Protocol for Plants with High Levels of Secondary Metabolites and Polysaccharides without Using Liquid Nitrogen and Phenol. ISRN Molecular Biology, 2012, 205049. doi: 10.5402/2012/205049.
Santos, A.L.F. et al., 2018. Comparison of DNA extraction using proteinase K and extraction kit: Analysis of the quality of the genetic material. Jornal Brasileiro de Patologia e Medicina Laboratorial, 54(2), pp.70–75. doi: 10.5935/1676-2444.20180013.
Särkinen, T. et al., 2012. How to Open the Treasure Chest? Optimising DNA Extraction from Herbarium Specimens. PLoS ONE, 7(8), e43808. doi: 10.1371/journal.pone.0043808.
Savi, A. et al., 2020. Bioactive compounds from Syzygium malaccense leaves: optimization of the extraction process, biological and chemical characterization. Acta Scientiarum. Technology, 42, e46773. doi: 10.4025/actascitechnol.v42i1.46773.
Scharf, S. et al., 2020. Introduction of a bead beating step improves fungal DNA extraction from selected patient specimens. International Journal of Medical Microbiology, 310(6), 151443. doi: 10.1016/j.ijmm.2020.151443.
Schenk, J.J. et al., 2023. What is the “modified” CTAB protocol? Characterizing modifications to the CTAB DNA extraction protocol. Applications in Plant Sciences, 11(3), e11517. doi: 10.1002/aps3.11517.
Schrader, C. et al., 2012. PCR inhibitors - occurrence, properties and removal. Journal of Applied Microbiology, 113(5), pp.1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x.
Schwessinger, B., 2023, 'DNA Quality Control by Agarose Gel Electrophoresis v1', in Protocols.io, viewed from https://www.protocols.io/view/dna-quality-control-by-agarose-gel-electrophoresis-n92ldpqw7l5b/v1
Scientific, G., 2022. Agarose Gel Electrophoresis Troubleshooting Guide.
Scientific, T.F., 1975. 260/280 and 260/230 Ratios. Ratio, pp.2–3.
Serna-Domínguez, M.G. et al., 2018. Two efficient methods for isolation of high-quality genomic DNA from entomopathogenic fungi. Journal of Microbiological Methods, 148, pp.55–63. doi: 10.1016/j.mimet.2018.03.012.
Sharma, A.D., Gill, P.K. & Singh, P., 2002. DNA isolation from dry and fresh samples of polysaccharide-rich plants. Plant Molecular Biology Reporter, 20(4), 415. doi: 10.1007/BF02772129.
Shepherd, L.D. & McLay, T.G.B., 2011. Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. Journal of Plant Research, 124(2), pp.311–314. doi: 10.1007/s10265-010-0379-5.
Shetty, P.J., 2020. The Evolution of DNA Extraction Methods. American Journal of Biomedical Science & Research, 8(1), pp.39–45. doi: 10.34297/ajbsr.2020.08.001234.
Simpson, H.L. et al., 2021. Soluble Non-Starch Polysaccharides From Plantain (Musa x paradisiaca L.) Diminish Epithelial Impact of Clostridioides difficile. Frontiers in Pharmacology, 12, 766293. doi: 10.3389/fphar.2021.766293.
Snoussi, A. et al., 2021. Drying methodology effect on the phenolic content, antioxidant activity of Myrtus communis L. leaves ethanol extracts and soybean oil oxidative stability. BMC Chemistry, 15(1), 31. doi: 10.1186/s13065-021-00753-2.
Song, H. et al., 2023. Arachis species: High‐quality forage crops—nutritional properties and breeding strategies to expand their utilization and feeding value. Grassland Research, 2(3), pp.212–219. doi: 10.1002/glr2.12059.
Sotelo, D.I., Casas F.N., & Camelo M.G., 2010. BOROJÓ (Borojoa patinoi): SOURCE OF POLYPHENOLS WITH ANTIMICROBIAL ACTIVITY. Vitae, 17(3), pp.329–336. doi: 10.17533/udea.vitae.7442.
Spadoni, A. et al., 2019. A simple and rapid method for genomic DNA extraction and microsatellite analysis in tree plants. Journal of Agricultural Science and Technology, 21(5), pp.1215–1226.
Spórna-Kucab, A. et al., 2020. Separation of betacyanins from Iresine herbstii Hook. ex Lindl. leaves by high-speed countercurrent chromatography in a polar solvent system. Journal of Chromatography A, 1626, 461370. doi: 10.1016/j.chroma.2020.461370.
Steitz, T.A., 1998. A mechanism for all polymerases. Nature, 391(6664), pp.231–232. doi: 10.1038/34542.
Suleiman, B., 2019. Effects of fermentation on the nutritional status of Crescentia cujete L. seed and its potentiality as aqua feedstuff. Animal Research International, 16(1), pp.3207–3212. Available at: https://bit.ly/3O5s3uj.
Taberlet, P. et al., 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3), e14. doi: 10.1093/nar/gkl938.
Tamari, F. & Hinkley, C.S., 2016. Extraction of DNA from Plant Tissue: Review and Protocols. In Sample Preparation Techniques for Soil, Plant, and Animal Samples, pp. 245–263. doi: 10.1007/978-1-4939-3185-9_17.
Thakuria, D. et al., 2008. Importance of DNA quality in comparative soil microbial community structure analyses. Soil Biology and Biochemistry, 40(6), pp.1390–1403. doi: 10.1016/j.soilbio.2007.12.027.
Thermo Scientific, 2020, 'NanoDrop One Microvolume UV-Vis Spectrophotometers', in Thermo Fisher Scientific, viewed from thermofisher.com/nanodrop.
Thitilertdecha, N. et al., 2010. Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities. Molecules, 15(3), pp.1453–1465. doi: 10.3390/molecules15031453.
Torres, D.E.G. et al., 2002. Antioxidant activity of macambo (Theobroma bicolor L.) extracts. European Journal of Lipid Science and Technology, 104(5), pp.278–281. doi: 10.1002/1438-9312(200205)104:5<278::AID-EJLT278>3.0.CO;2-K.
Van Pelt-Verkuil, E., Van Belkum, A. & Hays, J.P., 2008. Principles and Technical Aspects of PCR Amplification, Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-6241-4.
Varma, A., Padh, H. & Shrivastava, N., 2007. Plant genomic DNA isolation: An art or a science. Biotechnology Journal, 2(3), pp.386–392. doi: 10.1002/biot.200600195.
Vennapusa, A.R. et al., 2020. A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber. Scientific Reports, 10(1), 16887. doi: 10.1038/s41598-020-73958-5.
Vere, N. De et al., 2015. Dna barcoding for plants. Methods in Molecular Biology, 1245, pp.101–118. doi: 10.1007/978-1-4939-1966-6_8.
Volenzo, T. & Odiyo, J., 2020. Integrating endemic medicinal plants into the global value chains: the ecological degradation challenges and opportunities. Heliyon, 6(9), e04970. doi: 10.1016/j.heliyon.2020.e04970.
Wilfinger, W.W., Mackey, K. & Chomczynski, P., 1997. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques, 22(3), pp.474–481. doi: 10.2144/97223st01.
Wollgast, J. & Anklam, E., 2000. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), pp.423–447. doi: 10.1016/S0963-9969(00)00068-5.
Yanisko, P. et al., 2011. Nitrogen: A security blanket for the chemical industry. Chemical Engineering Progress, 107(11), pp.50–55.
Zhang, Y. et al., 2004. Pulsed-Field Gel Electrophoresis Study of Mycobacterium abscessus Isolates Previously Affected by DNA Degradation. Journal of Clinical Microbiology, 42(12), pp.5582–5587. doi: 10.1128/JCM.42.12.5582-5587.2004.
Zhang, Y.J. et al., 2010. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in Applied Microbiology, 51(1), pp.114–118. doi: 10.1111/j.1472-765X.2010.02867.x.
Zhong, H. et al., 2013. Deparaffinization and lysis by hydrothermal pressure (pressure cooking) coupled with chaotropic salt column purification: A rapid and efficient method of DNA extraction from formalin-fixed paraffin-embedded tissue. Diagnostic Molecular Pathology, 22(1), pp.52–58. doi: 10.1097/PDM.0b013e318263f092.
Zhou, Y. et al., 2023. Screening and characterization of phenolic compounds by LC-ESI-QTOF-MS/MS and their antioxidant potentials in papaya fruit and their by-products activities. Food Bioscience, 52, 102480. doi: 10.1016/j.fbio.2023.102480.