The Biodiversity Assessment of Sediment Community in Balekambang Lake, Dieng Plateau, Indonesia, using Environmental DNA (eDNA) Metabarcoding Approach

  • Ni Kadek Dita Cahyani Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia; Cluster for Paleolimnology (CPalim), Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0000-0003-4484-6414
  • Eka Maya Kurniasih Graduate School of Engineering and Science, University of The Ryukyus, Nishihara, Okinawa 903-0123, Japan https://orcid.org/0000-0001-9623-5928
  • Muhammad Danie Al Malik Department of Marine Science, Faculty of Fishery and Marine Science, Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0000-0002-3989-3593
  • Mirza Hanif Al Falah Cluster for Paleolimnology (CPalim), Diponegoro University, Semarang 50275, Indonesia; School of Postgraduate Studies, Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0000-0001-7452-2053
  • Fiska Aulia Rahma Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0009-0005-3511-6569
  • Shafa Tasya Nabila Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0009-0004-8992-6877
  • Tadzkirotul Laili Nur Fahma Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0009-0001-8317-7519
  • Jumari Jumari Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia; Cluster for Paleolimnology (CPalim), Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0000-0002-3150-5293
  • Riche Hariyati Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia; Cluster for Paleolimnology (CPalim), Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0000-0002-2536-5394
  • Tri Retnaningsih Soeprobowati Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang 50275, Indonesia; Cluster for Paleolimnology (CPalim), Diponegoro University, Semarang 50275, Indonesia; School of Postgraduate Studies, Diponegoro University, Semarang 50275, Indonesia https://orcid.org/0000-0001-7525-7028
Keywords: Eukaryota, eDNA Metabarcoding, 18S rRNA, Dieng Plateau, High Throughput Sequencing

Abstract

A sediment community is vital for the health of the surrounding community. Microbes play an essential role in chemical cycling. Meanwhile, diatoms, unicellular photosynthetic algae found in the water bodies and sediments, are used as water bioindicators for their fast responses to changes in water quality. Assessing the sediment community is crucial to understanding ecosystem dynamic. With the newest technology in DNA identification, this research aims to identify the community in the Balekambang Lake, Dieng Plateau, Central Java, Indonesia. This preliminary study tested the Environmental DNA (eDNA) Metabarcoding method to determine the eukaryotes in the sediment community. This study utilized the High-Throughput Sequencing method to massively identify the organism communities in the sediment, targeting the 18S rRNA gene. This study captured millions of sequences, including Eukaryota, Excavata, Amoebozoa, Opisthokonta, Rhizaria, and Alveolata supergroups. This method identified 14 genera and 13 species of multicellular and unicellular organisms from the Balekambang Lake sediment samples. Although this study could not identify more organism taxa due to a high number of "unidentified" groups in the sampling area, the results show the importance of the eDNA Metabarcoding technique for biodiversity assessment in the sediments.

References

Andriyono, S., Alam, M.J. & Kim, HW., 2020. The Jawa and Bali Island marine fish molecular identification to improve 12S rRNA-tRNA Valin-16S rRNA partial region sequences on the GenBank Database. Thalassas, 36, pp.343-356. doi: 10.1007/s41208-020-00196-x

Andriyono, S., Alam, M. J. & Kim, HW. 2021. Marine Fish Detection by Environmental DNA (eDNA) Metabarcoding Approach in the Pelabuhan Ratu Bay, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 11(2), pp.729-737. doi: 10.18517/ijaseit.11.2.9528

Andriyono, S. et al., 2023. Diversity of Dinoflagellate Cysts Isolated from Estuarine Sediments of the Bengawan Solo and Brantas Rivers, Indonesia. Biodiversitas, 24(2), pp.1083-1091. doi: 10.13057/biodiv/d240248

Bailet, B. et al. 2020. Diatom DNA metabarcoding for ecological assessment: Comparison among bioinformatics pipelines used in six European countries reveals the need for standardization. Science of The Total Environment, 745, 140948. doi: 10.1016/j.scitotenv.2020.140948

Barnes, M.A. et al. 2021. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 3(3), pp.643-653. doi: 10.1002/edn3.160

Battarbee, R.W. et al., 2010. Diatoms as indicators of surface-water acidity. In The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press: pp.98-121.

B-Béres, V., Stenger-Kovács, C. & Buczkó, K., 2023. Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia, 850, pp.2707–2733. doi: 10.1007/s10750-022-04984-9

Beng, K.C. & Corlett, R.T., 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation, 29, pp.2089–2121. doi: 10.1007/s10531-020-01980-0

Bhat, A. H. et al., 2020. Morphological and molecular characterisation of Distolabrellus veechi (Rhabditida: Mesorhabditidae) from India. Nematology, 22(4), pp.439–452. doi: 10.1163/15685411-00003315

Cahyani, N.K.D., 2021. Delineating Macro and Micro Marine Biodiversity in the Coral Triangle Using Autonomous Reef Monitoring Structures and DNA Metabarcoding. University of California Los Angeles.

Cahyani, N.K.D. et al., 2024. Inventorizing marine biodiversity using eDNA data from Indonesian coral reefs: comparative high throughput analysis using different bioinformatic pipelines. Marine Biodiversity, 54, 39. doi: 10.1007/s12526-024-01432-w

Callahan, B. et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, pp.581–583. doi: 10.1038/nmeth.3869

Casey, J. M. et al., 2021. DNA metabarcoding marker choice skews perception of marine eukaryotic biodiversity. Environmental DNA, 3, pp.1229–1246. doi: 10.1002/edn3.245

Dellinger, M. et al., 2014. Haplomyxa saranae gen. nov. et sp. nov., a New Naked Freshwater Foraminifer. Protist, 165(3), pp.317–329. doi: 10.1016/j.protis.2014.03.007.

Elbrecht, V. et al., 2017. Assessing strengths and weaknesses of DNA metabarcoding‐based macroinvertebrate identification for routine stream monitoring. Methods in Ecology and Evolution, 8(10), pp.1265-1275. doi: 10.1111/2041-210X.12789

Escalante, N.K. et al., 2016. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. Journal of experimental medicine, 213(13), pp.2841-2850. doi: 10.1084/jem.20161776

Evans, K.M., Wortley, A.H. & Mann, D.G., 2007. An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist, 158(3), 349–364. doi: 10.1016/j.protis.2007.04.001

Fahma, T.L.N. et al., 2024. Environmental DNA Approach to Identify Protists Community in Sediment of Balekambang Lake, Indonesia, Using 18S rRNA Gene. Springer Proceedings in Earth and Environmental Sciences, pp.283-294. doi: 10.1007/978-3-031-71555-6_25

Foster, N.R. et al., 2020. A muddy time capsule: using sediment environmental DNA for the long-term monitoring of coastal vegetated ecosystems. Marine and Freshwater Research, 71(8), pp.869-876. doi: 10.1071/MF19175

Garcia-Vazquez, E. at al., 2021. eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters. Scientific Reports, 11(1), 7224. doi: 10.1038/s41598-021-86731-z

Gregersen, R. et al., 2023. A taxonomy-free diatom eDNA-based technique for assessing lake trophic level using lake sediments. Journal of Environmental Management, 345, 118885. doi: 10.1016/j.jenvman.2023.118885

Guillou, L. et al., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research, 41(Database issue), pp.D597-604. doi: 10.1093/nar/gks1160

Hakim, L., Mukhzayadah, M. & Ratnadingdyah, C., 2014. Ecological and Social Evaluation of Coastal Tourism Destination Development: a Case Study of Balekambang, East Java. Journal of Indonesian Tourism and Development Studies, 2(1), pp.26-32.

Hauer, C. et al., 2018. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystem Management. Springer, Cham. doi: 10.1007/978-3-319-73250-3_8

Juhel, J.-B. et al., 2022. Estimating the extended and hidden species diversity from environmental DNA in hyper-diverse regions. Ecography, 2022(10), e06299. doi: 10.1111/ecog.06299

Joesidawati, M.I. et al., 2023. DNA Barcoding of Anchovy in Tuban Regency as Database of Indonesian Marine Genetic Diversity. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 28 (4), pp.383-391. doi: 10.14710/ik.ijms.28.4.383-391

Jouany, J.P. & Ushida, K., 1999. The role of protozoa in feed digestion-Review. AJAS, 12(1), pp.113-128. doi: 10.5713/ajas.1999.113

Kandlikar, G.S. et al., 2018. Ranacapa: An R package and shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Research, 7, 1734. https://doi.org/10.12688/f1000research.16680.1

Kelly, R.P. et al., 2016. Genetic signatures of ecological diversity along an urbanization gradient. PeerJ, 4, e2444. doi: 10.7717/peerj.2444

Kelly, R.P. et al., 2017. Genetic and Manual Survey Methods Yield Different and Complementary Views of an Ecosystem. Frontiers in Marine Science, 3, 283. doi: 10.3389/fmars.2016.00283

Kumar, G. et al., 2022. Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PloS One, 17(6), e0266720. doi: 10.1371/journal.pone.0266720

Kutty, S.N. et al., 2022. Evaluation of a diatom eDNA-based technique for assessing water quality variations in tropical lakes and reservoirs. Ecological Indicators, 141, 109108. doi: 10.1016/j.ecolind.2022.109108

Litchman, E., Klausmeier, C.A. & Yoshiyama, K., 2009. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the United States of America, 106(8), pp.2665-2670. doi: 10.1073/pnas.0810891106.

Lim, N.K.M. et al., 2016. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. Royal Society Open Science, 3(11), 160635. doi: 10.1098/rsos.160635.

Madduppa, H. et al., 2021. eDNA metabarcoding illuminates species diversity and composition of three phyla (chordata, mollusca and echinodermata) across Indonesian coral reefs. Biodiversity and Conservation, 30, pp.3087–3114. doi: 10.1007/s10531-021-02237-0

Mann, D.G. & Vanormelingen, P., 2013. An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology, 60(4), pp.414-420. doi: 10.1111/jeu.12047

Manzari, C. et al., 2015. LifeWatch – MoBiLab Report. Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.

Masouras, A. et al., 2021. Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water, 13(4), 478. doi: 10.3390/w13040478

McMurdie, P.J. & Holmes, S. 2013. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4), e61217. doi: 10.1371/journal.pone.0061217.

Menta, C. & Remelli, S., 2020. Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects, 11(1), 54. doi: 10.3390/insects11010054.

Pawlowski, J. et al., 2016. Protist metabarcoding and environmental biomonitoring: Time for change. European Journal of Protistology, 55 (Part A), pp.12–25. doi: 10.1016/j.ejop.2016.02.003

Pereira, C.L. et al., 2021. Fine-tuning biodiversity assessments: A framework to pair eDNA metabarcoding and morphological approaches. Methods in Ecology and Evolution, 12, pp.2397–2409. doi: 10.1111/2041-210X.13718

Persaud, S.F., Cottenie, K. & Gleason, J.E., 2021. Ethanol eDNA Reveals Unique Community Composition of Aquatic Macroinvertebrates Compared to Bulk Tissue Metabarcoding in a Biomonitoring Sampling Scheme. Diversity, 13(1), 34. doi: 10.3390/d13010034

Putri, H.A. et al., 2023. An Interpretation of Diatom Community for Environmental Record in 5-65 cm of Cebong Lake Sediment. Polish Journal of Environmental Studies, 32(5), pp.4781-4788. doi: 10.15244/pjoes/166889

Quandt, C.A. et al., 2023. Evaluating the diversity of the enigmatic fungal phylum Cryptomycota across habitats using 18S rRNA metabarcoding. Fungal Ecology, 64, 101248. doi: 10.1016/j.funeco.2023.101248

Ray, P. et al., 2020. Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture. Frontiers in Microbiology, 11, 622926. doi: 10.3389/fmicb.2020.622926

Rees, H.C. et al., 2014. REVIEW: The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51, pp.1450-1459. doi: 10.1111/1365-2664.12306

Sakata, M.K., 2020. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA, 2, pp.505–518. doi: 10.1002/edn3.75

Santos, L.F. & Olivares, F.L. 2021. Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 26, 100198. doi: 10.1016/j.cpb.2021.100198

Sari, K. et al., 2021. Trace Metals and Diatom Stratigraphy along the Sill between Lakes Telaga Warna and Telaga Pengilon, Dieng, Central Java, Indonesia. Sustainability, 13(7), 3821. doi: 10.3390/su13073821

Shinzato, C. et al., 2018. Using seawater to document coral-zoothanthella diversity: a new approach to coral reef monitoring using environmental DNA. Frontiers in Marine Science, 5, 28. doi: 10.3389/fmars.2018.00028

Soeprobowati, T.R. et al., 2012. The diatom stratigraphy of Rawapening Lake, implying eutrophication history. American Journal of Environmental Sciences, 8(3), pp.334-344. doi: 10.3844/ajessp.2012.334.344

Soeprobowati, T.R. et al., 2016. The Minimum Number of Valves for Diatoms Identification in Rawapening Lake, Central Java. Biotropia, 23(2), pp.97-100. doi: 10.11598/btb.2016.23.2.486

Soeprobowati, T.R. et al., 2018. Diatom assemblage in the 24 cm upper sediment associated with human activities in Lake Warna Dieng Plateau Indonesia. Environmental Technology & Innovation, 10, pp.314-323. doi: 10.1016/j.eti.2018.03.007

Soeprobowati, T.R. et al., 2021. Physico-chemical and biological water quality of Warna and Pengilon Lakes, Dieng, Central Java. Journal of Land and Water Development, 51(X–XII), pp.36–47. doi: 10.24425/jwld.2021.139013.

Soeprobowati, T.R. et al., 2022. The Relationship of Water Quality to Epipelic Diatom Assemblages in Cebong Lake, Dieng Indonesia. Polish Journal of Environmental Studies, 31(1), pp.281-295. doi: 10.15244/pjoes/137084

Soeprobowati, T.R. et al., 2023. Diatom index of Galela Lake, Halmahera, Indonesia in relation to human activities. International Journal of Environmental Science and Technology, 20(7), pp.7707-7722. doi: 10.1007/s13762-022-04463-7

Stefanidis, K., & Papastergiadou, E., 2024. Ecological Monitoring and Assessment of Freshwater Ecosystems: New Trends and Future Challenges. Water, 16(11), 1460. doi: 10.3390/w16111460

Sun, Z. et al., 2018. Aquatic biodiversity in sedimentation ponds receiving road runoff – What are the key drivers? Science of The Total Environment, 610–611, pp.1527-1535. doi: 10.1016/j.scitotenv.2017.06.080

Vonk, J.E. et al., 2016. Arctic Deltaic Lake Sediments as Recorders of Fluvial Organic Matter Deposition. Frontiers in Earth Science, 4, 77. doi: 10.3389/feart.2016.00077

Wickham, H., Navarro, D. & Pedersen, T.L., 2016. ggplot2: Elegant Graphics for Data Analysis, New York: Springer-Verlag.

Zheng, X. et al., 2021. Candida oleophila proliferated and accelerated accumulation of suberin poly phenolic and lignin at wound sites of potato tubers. Foods, 10(6), 1286. doi: 10.3390/foods10061286

Zimmermann, J. et al., 2015. Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Molecular Ecology Resources, 15(3), pp.526-542. doi: 10.1111/1755-0998.12336

Published
2025-09-08
How to Cite
Cahyani, N. K. D., Kurniasih, E. M., Malik, M. D. A., Falah, M. H. A., Rahma, F. A., Nabila, S. T., Fahma, T. L. N., Jumari, J., Hariyati, R. and Soeprobowati, T. R. (2025) “The Biodiversity Assessment of Sediment Community in Balekambang Lake, Dieng Plateau, Indonesia, using Environmental DNA (eDNA) Metabarcoding Approach”, Journal of Tropical Biodiversity and Biotechnology, 10(3), p. jtbb13857. doi: 10.22146/jtbb.13857.
Section
Research Articles