Identification and Characterisation of Endophytic Bacteria in Rice Bean (Vigna umbellata)

  • Marjohn C. Niño College of Agriculture, Food Science, Agribusiness and Development Communication, Cebu Technological University Barili Campus Cagay, Barili, Cebu, 6036, Philippines; College of Agriculture, Northern Iloilo State University Barotac Viejo Campus, Puerto Princesa, Barotac Viejo, Iloilo, 5011, Philippines https://orcid.org/0000-0003-0405-9803
  • Jerome H. Ruiz College of Agriculture, Food Science, Agribusiness and Development Communication, Cebu Technological University Barili Campus Cagay, Barili, Cebu, 6036, Philippines; College of Technology, Siquijor State College, Larena, Siquijor, 6226, Philippines https://orcid.org/0000-0003-4713-9520
  • Maria Lima D. Pascual College of Agriculture, Food Science, Agribusiness and Development Communication Cebu Technological University Barili Campus Cagay, Barili, Cebu, 6036, Philippines https://orcid.org/0000-0002-2742-2268
Keywords: Endophytic bacteria, Indigenous crop, Plant growth-promotion, Rice bean, 16S rDNA

Abstract

Rice bean (Vigna umbellata) is an underutilised legume with unexplored endophytic microbiome. Identification and characterisation of these endophytes are critical in understanding their roles in plant’s growth, health, and productivity. In this study, twelve morphologically and biochemically distinct bacterial endophytes were isolated from rice bean roots. Sequence analysis of the 16S rDNA of the isolates revealed that members of Proteobacteria, including Stenotrophomonas sp., Shinella sp., Roseomonas sp., Pantoea dispersa, and Serratia marcescens dominated the root tissues of rice bean. The remaining isolates were found to be members of Actinobacteria, Bacteroidetes, and Firmicutes. The in vitro assays showed the potential abilities of the endophytic Stenoprophomonas sp., Shinella sp., Microbacterium gilvum, Serratia marcescens, and Bacillus qingshengii in indole acetic acid production, exopolysaccharide production, and phosphate solubilisation. Overall findings suggest diverse and potentially multifunctional endophytes in rice bean that can be incorporated into agricultural practices and crop improvement programs.

Author Biography

Marjohn C. Niño, College of Agriculture, Food Science, Agribusiness and Development Communication, Cebu Technological University Barili Campus Cagay, Barili, Cebu, 6036, Philippines; College of Agriculture, Northern Iloilo State University Barotac Viejo Campus, Puerto Princesa, Barotac Viejo, Iloilo, 5011, Philippines

College of Agriculture

References

Billah, M. et al., 2019. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiology Journal, 36(10), pp.904-916. doi: 10.1080/01490451.2019.1654043.

Dhillon, P.K. & Tanwar, B., 2018. Rice bean: A healthy and cost-effective alternative for crop and food diversity. Food Security, 10, pp.525-525. doi.org/10.1007/s12571-018-0803-6.

Dunican, L.K. & Seeley, H.W., 1962. Starch hydrolysis by Streptococcus equinus. Journal of Bacteriology, 83(2), pp.264-269. doi: 10.1128/jb.83.2.264-269.1962.

Egamberdieva, D. et al., 2017. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8, 2104. doi: 10.3389/fmicb.2017.02104.

El-Sayed, W.S. et al., 2014. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology, 5, 651. doi: 10.3389/fmicb.2014.00651.

Gamalero, E., Bona, E. & Glick, B.R., 2022. Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms, 10(7), 1380. doi: 10.3390/microorganisms10071380.

Guan, J. et al., 2022. Genomic analyses of rice bean landraces reveal adaptation and yield related loci to accelerate breeding. Nature Communications, 13, 5707. doi.org/10.1038/s41467-022-33515-2.

Hamada, M.A. & Soliman, E.R.S., 2023. Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiology, 23, 210. doi.org/10.1186/s12866-023-02941-7.

Khan, M.A. et al., 2021. Rhizospheric Bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. Frontiers in Plant Science, 12, 665590. doi: 10.3389/fpls.2021.665590.

Kumar, A. et al., 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216. doi: 10.3389/fmicb.2020.01216.

Letunic, I. & Bork, P., 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(1), pp.293-296. doi: 10.1093/nar/gkab301.

Liu, J. et al., 2017. Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydrate Polymers, 157, pp.1113-1124. doi: 10.1016/j.carbpol.2016.10.084

Loper, J.E. & Schroth, M.N., 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology, 76(4), pp.386-389. doi: 10.1094/Phyto-76-386

Lopez, K.B.A. et al., 2016. Culturable endophytic bacterial communities associated with field-grown soybean. Journal of Applied Microbiology, 120(3), pp.740-755. doi: 10.1111/jam.13046.

Miché, L. & Balandreau, J., 2001. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Applied and Environmental Microbiology, 67(7), pp.3046-3052. doi: 10.1128/AEM.67.7.3046-3052.2001.

Nautiyal, C.S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, pp. 265-270. doi: 10.1111/j.1574-6968.1999.tb13383.x.

Pan, L. & Cai, B., 2023. Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms, 11(12), 2904. doi.org/10.3390/microorganisms11122904.

Pattanayak, A. et al., 2018. Diversity analysis of rice bean (Vigna umbellata (Thunb.) Ohwi and Ohashi) collections from North Eastern India using morpho-agronomic traits. Scientia Horticulturae, 242, pp.170–180. doi.org/10.1016/j.scienta.2018.08.003.

Pattanayak, A. et al., 2019. Rice bean: a lesser known pulse with well-recognized potential. Planta, 250(3), pp.873–890. doi.org/10.1007/s00425-019-03196-1

Rana, K.L. et al., 2020. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek, 113(8), pp.1075-1107. doi: 10.1007/s10482-020-01429-y.

Rasheed, Z., 2024. Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. International Journal of Health Sciences (Qassim), 18(2), pp.1-6.

Reiner, K., 2012. Carbohydrate Fermentation Protocol. American Society for Microbiology.

Sarker, M.M.R. et al., 2014. Studies of the impact of occupational exposure of pharmaceutical workers on the development of antimicrobial drug resistance. Journal of Occupational Health, 56, pp.260-270. doi: 10.1539/joh.14-0012-OA.

Shokri, D. & Emtiazi, G., 2010. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Current Microbiology, 61(3), pp.217-225. doi: 10.1007/s00284-010-9600-y.

Tamura, K. & Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, pp.512-526. doi: 10.1093/oxfordjournals.molbev.a040023.

Tamura, K., Stecher, G. & Kumar, S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), pp.3022-3027. doi: 10.1093/molbev/msab120.

Taulé, C. et al., 2016. Endophytic colonization of sugarcane (Saccharum officinarum) by the novel diazotrophs Shinella sp. UYSO24 and Enterobacter sp. UYSO10. Plant Soil, 403, pp.403–418. doi: 10.1007/s11104-016-2813-5.

Ulrich, K. et al., 2021. Genomic Analysis of the Endophytic Stenotrophomonas Strain 169 Reveals Features Related to Plant-Growth Promotion and Stress Tolerance. Frontiers in Microbiology, 12, 687463. doi: 10.3389/fmicb.2021.687463.

Verma, S.K. et al., 2022. Vignette of Vigna domestication: From archives to genomics. Frontiers in Genetics, 13, 960200. doi: 10.3389/fgene.2022.960200.

Verma, S.K. & White, J.F., 2018. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). Journal of Applied Microbiology, 124, pp.764–778. doi: 10.1111/jam.13673.

Wang, B. et al., 2020. Unravelling kinetic and microbial responses of enriched nitrifying sludge under long-term exposure of cephalexin and sulfadiazine. Water Research, 173, 115592. doi: 10.1016/j.watres.2020.115592.

White, J.F. et al., 2019. Review: Endophytic microbes and their potential applications in crop management. Pest Management Science, 75(10), pp.2558-2565. doi: 10.1002/ps.5527. doi: 10.1002/ps.5527.

Zhu, W. et al., 2022. Isolation and characterization of tick-borne Roseomonas haemaphysalidis sp. nov. and rodent-borne Roseomonas marmotae sp. nov. Journal of Microbiology, 60(2), pp.137-146. doi: 10.1007/s12275-022-1428-1.

Zlosnik, J.E. et al., 2008. Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. Journal of Clinical Microbiology, 46(4), pp.1470-1473. doi: 10.1128/JCM.02273-07.

Published
2025-04-21
How to Cite
Niño, M. C., Ruiz, J. H. and Pascual, M. L. D. (2025) “Identification and Characterisation of Endophytic Bacteria in Rice Bean (Vigna umbellata) ”, Journal of Tropical Biodiversity and Biotechnology, 10(2), p. jtbb14798. doi: 10.22146/jtbb.14798.
Section
Research Articles