Whole-Genome Analysis and Tolerance Assessment on Bifidobacteria-like Bacteria Isolated from Breast Milk and Infant Fecal Samples in Indonesia

  • Theresa Florensia Huang Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia.
  • Jonathan Suciono Purnomo Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia.
  • Angle Berliani Rombot Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia.
  • Isaura Andreana Kowanda Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia.
  • Rachel Theoni Lorentz Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia.
  • Marcelia Sugata Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia. https://orcid.org/0000-0002-2879-6990
  • Tan Tjie Jan Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia.
  • Juandy Jo Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia; Mochtar Riady Institute for Nanotechnology, Tangerang 15811, Indonesia https://orcid.org/0000-0002-5366-7605
Keywords: Bifidobacterium species, Human Breast Milk, Infant Feces, Lactobacillus species, Probiotics, Whole Genome

Abstract

Probiotics are living microorganisms that can provide health benefits to the host when administered in sufficient quantities. To exert their health effects, probiotics must first be capable of surviving the harsh conditions of the gastrointestinal tract. We decided to sequence whole genomes of Bifidobacteria-like isolates (i.e., BS2-PS1, BS2-PS2, BS2-PB5, and BR2-12) and assess their abilities to resist low pH and bile salt. Molecular identification through whole genome sequencing indicated that the bacteria isolated from human breast milk were identified as Bifidobacterium breve (BS2-PS1 and BS2-PS2) and Lacticaseibacillus paracasei subspecies paracasei (BS2-PB5), whereas the bacteria isolated from infant feces was identified as Lactiplantibacillus plantarum (BR-12). All isolates exhibited resilience upon exposure to bile salts at concentrations of 0%, 0.3%, and 0.5%, with survival observed even at the highest concentration (0.5%) after three hours of incubation. The ability to withstand bile salt was presumably mediated by various genes that encode the resistance, e.g., bsh, cbh, dps, glf, cfa, or nagB, found in genomes of tested isolates. Upon exposure to pH 2 and 5 for three hours, BS2-PS1, BS2-PS2, and BR-12 exhibited acid resistance as well. The ability to withstand low pH could be mediated by the presence of relevant genes, e.g., argC, argH, dapA, pyk, pyrG, as well as genes that encode F0F1-ATPase enzyme, such as atpC, atpB, atpE, atpF, atpH, atpA, atpG, and atpD in their genomes. In summary, these results indicated the potential of all isolates to be further developed as probiotic candidates.

References

Abell, T.L. et al., 2008. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. Journal of Nuclear Medicine Technology, 36(1):44-54. doi: 10.2967/jnmt.107.048116.
Albarracin, L. et al., 2022. Genomic characterization of Lactiplantibacillus plantarum strains possessing differential antiviral immunomodulatory activities. Bacteria, 1(3), pp.136–160. doi: 10.3390/bacteria1030012.
Aoi, W. & Marunaka, Y., 2014. Importance of pH homeostasis in metabolic health and diseases: Crucial role of Membrane Proton Transport. BioMed Research International, 2014, pp.1–8. doi: 10.1155/2014/598986.
Bazireh, H. et al., 2020. Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Frontiers in Microbiology, 11, pp.1-12. doi: 10.3389/fmicb.2020.597946.
Bourgin, M. et al., 2021. Bile salt hydrolases: At the crossroads of Microbiota and human health. Microorganisms, 9(6), pp.1122–1134. doi: 10.3390/microorganisms9061122.
Contente, D. et al., 2024. Genomic and functional evaluation of two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum strains, isolated from a rearing tank of rotifers (Brachionus plicatilis), as probiotics for Aquaculture. Genes, 15(1), pp.64–82. doi: 10.3390/genes15010064.
Dosan, R. et al., 2024. Isolation and identification of Bifidobacterium species from human breast milk and infant feces in Indonesia. Biodiversitas Journal of Biological Diversity, 25(1), pp.337–343. doi: 10.13057/biodiv/d250139.
Europe International Probiotics Association., 2021, The Probiotic Market Overview, viewed on 19 January 2024, from https://www.ipaeurope.org/legal-framework/market-data/.
Engevik, M.A. et al., 2021. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiology, 21(1), pp.1–26. doi: 10.1186/s12866-021-02166-6.
Flórez, A.B. et al., 2022. Phenotypic and safety assessment of the cheese strain Lactiplantibacillus plantarum LL441, and sequence analysis of its complete genome and plasmidome. International Journal of Molecular Sciences, 24(1), pp.605–621. doi: 10.3390/ijms24010605.
González-Vázquez, R. et al., 2022. Genomic and biochemical characterization of Bifidobacterium pseudocatenulatum JCLA3 isolated from human intestine. Microorganisms, 10(11), pp.2100. doi: 10.3390/microorganisms10112100.
Grant, J.R. et al., 2023. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Research, 51(W1), pp.484–492. doi: 10.1093/nar/gkad326.
Grimm, V., Westermann, C. & Riedel, C.U., 2014. Bifidobacteria-host interactions—an update on colonisation factors. BioMed Research International, 2014, pp.960826. doi: 10.1155/2014/960826.
Hagi, T. et al., 2020. The effect of bile acids on the growth and global gene expression profiles in Akkermansia muciniphila. Applied Microbiology and Biotechnology, 104(24), pp.10641–10653. doi: 10.1007/s00253-020-10976-3.
Harris, L.G., 2022. Microbial cell structure and organization: Bacteria. Encyclopedia of Infection and Immunity, pp.345–362. doi: 10.1016/B978-0-12-818731-9.00191-9.
Henze, L.J. et al., 2021. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. European Journal of Pharmaceutical Sciences, pp.156: 105627–105639. doi: 10.1016/j.ejps.2020.105627.
Hill, C. et al., 2014. The International Scientific Association for Probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), pp.506–514. doi: 10.1038/nrgastro.2014.66.
Hu, Y. & Li, Y., 2018. Effect of low pH treatment on cell cycle and cell growth. The FASEB Journal, 32(S1). doi: 10.1096/fasebj.2018.32.1_supplement.804.49.
Jain, C. et al., 2018. High throughput ANI analysis of 90k prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), pp.1–8. doi: 10.1038/s41467-018-07641-9.
Jarocki, P. et al., 2014. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium. PLoS ONE, 9(12), pp.1-24. doi: 10.1371/journal.pone.0114379.
Kanwal, H. et al., 2021. Probiotic characterization and population diversity analysis of gut-associated Pediococcus acidilactici for its potential use in the dairy industry. Applied Sciences, 11(20), pp.9586. doi: 10.3390/app11209586.
Keffeler, E.C. et al., 2021. Metabolism of poly-Β1,4-n-acetylglucosamine substrates and importation of n-acetylglucosamine and glucosamine by Enterococcus faecalis. Journal of Bacteriology, 203(21). doi: 10.1128/jb.00371-21.
Khawaldeh, S. et al., 2017. Taxonomic classification for living organisms using convolutional neural networks. Genes, 8(11), pp.326–337. doi: 10.3390/genes8110326.
Khushboo., Karnwal, A. & Malik, T., 2023. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of Functional Foods. Frontiers in Microbiology, 14, pp.1–14. doi: 10.3389/fmicb.2023.1170725.
Kim, E. et al., 2022. Complete genome sequencing and comparative genomics of three potential probiotic strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Frontiers in Microbiology, 12, pp.1–16. doi: 10.3389/fmicb.2021.794315.
Kingkaew, E. et al., 2023. Functional genome analysis and anti-helicobacter pylori activity of a novel bacteriocinogenic Lactococcus sp. NH2-7c from Thai fermented pork (NHAM). Scientific Reports, 13(1), pp.1–17. doi: 10.1038/s41598-023-47687-4.
Lawson, M.A.E. et al., 2020. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. The ISME Journal, 14(2), pp.635-648. doi: 10.1038/s41396-019-0553-2.
Lee, Y. et al., 2023. Characterization of a potential probiotic Lactiplantibacillus plantarum LRCC5310 by comparative genomic analysis and its vitamin B6 production ability. Journal of Microbiology and Biotechnology, 33(5), pp.644–655. doi: 10.4014/jmb.2211.11016.
Li, W. et al., 2024. Genomic and functional diversity of cultivated Bifidobacterium from human gut microbiota. Heliyon, 10(5), pp.1–14. doi: 10.1016/j.heliyon.2024.e27270.
Letunic, I. & Bork, P., 2021. Interactive tree of life (itol) V5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), pp.293–296. doi: doi.org/10.1093/nar/gkab301.
Marbun, K.T. et al., 2024. Genomic characterization and safety assessment of Bifidobacterium breve BS2- PB3 as functional food. Journal of Microbiology and Biotechnology, 34(4), pp.1-9. doi: 10.4014/jmb.2311.11031.
Martinez, I., Muller, C.E. & Walter, J., 2013. Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS ONE, 8(7), pp.69621. doi: 10.1371/journal.pone.0069621.
Meier-Kolthoff, J.P. & Göker, M., 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10(1), pp.194–225. doi: 10.1038/s41467-019-10210-3.
Mendonça, A.A. et al., 2022. Journey of the probiotic bacteria: Survival of the fittest. Microorganisms, 11(1), pp.95–131. doi: 10.3390/microorganisms11010095.
Min, B. et al., 2022. Genomic characteristics and comparative genomic analysis of a probiotic bacterial strain, Lactiplantibacillus plantarum CKDB008. Food Supplements and Biomaterials for Health, 2(4), pp.1–20. doi: 10.52361/fsbh.2022.2.e32.
O’Flaherty, S. et al., 2018. The Lactobacillus bile salt hydrolase repertoire reveals niche-specific adaptation. mSphere, 3(3). doi: 10.1128/msphere.00140-18.
Ojo-Okunola, A., Nicol, M. & Toit, E., 2018. Human breast milk bacteriome in health and disease. Nutrients, 10(11), pp.1643–1656. doi: 10.3390/nu10111643.
Reyes-Castillo, P.A. et al., 2023. Bifidobacterium longum LBUX23 isolated from feces of a newborn; potential probiotic properties and genomic characterization. Microorganisms, 11(7), pp.1648–1667. doi: 10.3390/microorganisms11071648.
Rossi, F. et al., 2022. Variability of genetic characters associated with probiotic functions in Lacticaseibacillus species. Microorganisms, 10(5), pp.1023–1036. doi: 10.3390/microorganisms10051023.
Schöpping, M., Zeidan, A.A. & Franzén, C.J., 2022. Stress response in Bifidobacteria. Microbiology and Molecular Biology Reviews, 86(4). doi: 10.1128/mmbr.00170-21.
Shimizu, K. et al., 2023. Identification of genes essential for bile acid resistance in the probiotic Lacticaseibacillus paracasei strain Shirota. Letters in Applied Microbiology, 76(6). doi: 10.1093/lambio/ovad062.
Skoufou, M. et al., 2024. The networked interaction between probiotics and intestine in health and disease: A promising success story. Microorganisms, 12(1), pp,194–225. doi: 10.3390/microorganisms12010194.
Singhal, N. et al., 2021. Rhizospheric Lactiplantibacillus plantarum strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro. Scientific Reports, 11(1), pp.1–9. doi: 10.1038/s41598-021-94776-3.
Song, Z. et al., 2019. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome, 7(1), pp.1-16. doi: 10.1186/s40168-019-0628-3.
Sunardi, J. et al., 2023. A comparative assessment of Lactiplantibacillus plantarum isolated from chicken and humans as candidates for probiotics. Biodiversitas Journal of Biological Diversity, 24(9) pp.5198-5206. doi: 10.13057/biodiv/d240964.
Tang, J. & Matsuda, Y., 2024. Discovery of fungal onoceroid triterpenoids through domainless enzyme-targeted global genome mining. Nature Communications, 15(1). doi: 10.1038/s41467-024-48771-7.
Tanizawa, Y. et al., 2016. DFAST and daga: Web-based Integrated Genome Annotation Tools and resources. Bioscience of Microbiota, Food and Health, 35(4), pp.173–184. doi: 10.12938/bmfh.16-003.
Tran, T.T.T. et al., 2021. Sulphate-reducing bacteria’s response to extreme pH environments and the effect of their activities on microbial corrosion. Applied Sciences, 11(5), pp.2201–2220. doi: 10.3390/app11052201.
Urdaneta, V. & Casadesús, J., 2017. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Frontiers in Medicine, 4(163), pp.1–13. doi: 10.3389/fmed.2017.00163.
Valdez-Baez, J. et al., 2022. Comparative genomics and in silico evaluation of genes related to the probiotic potential of Bifidobacterium breve 1101A. Bacteria, 1(3), pp.161–182. doi: 10.3390/bacteria1030013.
Vestergaard, M., Bald, D. & Ingmer, H., 2022. Targeting the ATP synthase in bacterial and fungal pathogens: Beyond Mycobacterium tuberculosis. Journal of Global Antimicrobial Resistance, 29, pp.29–41. doi: 10.1016/j.jgar.2022.01.026.
Virk, M.S. et al., 2024. The anti-inflammatory and curative exponent of probiotics: A comprehensive and authentic ingredient for the sustained functioning of major human organs. Nutrients, 16(4), pp.546–602. doi: 10.3390/nu16040546.
Wang, G. et al., 2021. Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. LWT, 145, pp.111208–111216. doi: 10.1016/j.lwt.2021.111208.
Wall, E.H. et al., 2014. The role of genetics in estrogen responses: A critical piece of an intricate puzzle. The FASEB Journal, 28(12), pp.5042–5054. doi: 10.1096/fj.14-260307.
Wu, P. et al., 2021. Differences in acid stress response of Lacticaseibacillus paracasei zhang cultured from solid-state fermentation and liquid-state fermentation. Microorganisms, 9(9), pp.1951–1971. doi: 10.3390/microorganisms9091951.
Wu, Y. et al., 2022. Assessing the safety and probiotic characteristics of Bacillus coagulans 13002 based on complete genome and phenotype analysis. LWT, 155, pp.112847–112856. doi: 10.1016/j.lwt.2021.112847.
Xu, T., Pagadala, V. & Mueller, D., 2015. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Microbial Cell, 2(4), pp.105–125. doi: 10.15698/mic2015.04.197.
Yi, D. & Kim, S., 2021. Human breast milk composition and function in human health: From nutritional components to microbiome and micrornas. Nutrients, 13(9), pp.3094–3105. doi: 10.3390/nu13093094.
Yin, H. et al., 2012. Induction of holomycin production and complex metabolic changes by the argr mutation in Streptomyces clavuligerus NP1. Applied and Environmental Microbiology, 78(9), pp.3431–3441. doi: 10.1128/aem.07699-11.
Zheng, J. et al., 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), pp.2782-2858. doi: 10.1099/ijsem.0.004107.
Zimmermann, P. & Curtis, N., 2020. Breast milk microbiota: A review of the factors that influence composition. Journal of Infection, 81, pp.17–47. doi: 10.1016/j.jinf.2020.01.023.
Published
2025-04-11
How to Cite
Huang, T. F., Purnomo, J. S., Rombot, A. B., Kowanda, I. A., Lorentz, R. T., Sugata, M., Jan, T. T. and Jo, J. (2025) “Whole-Genome Analysis and Tolerance Assessment on Bifidobacteria-like Bacteria Isolated from Breast Milk and Infant Fecal Samples in Indonesia ”, Journal of Tropical Biodiversity and Biotechnology, 10(2), p. jtbb15062. doi: 10.22146/jtbb.15062.
Section
Research Articles