Bioinformatic Characterization of the Mitogen-Activated Protein Kinase Genes in Wild Arachis Species with Expression Insights in Arachis Hypogaea
Abstract
Mitogen-activated protein kinases (MAPKs) are crucial signalling components involved in plant growth, development, and responses to environmental stimuli. While their roles are well established in model plants, comprehensive characterisation in Arachis species remains limited. This in silico study conducted a genome-wide identification and analysis of MAPK genes in cultivated peanut (A. hypogaea) and its two wild Arachis species, A. duranensis, and A. ipaensis. We identified 42 AhMAPK, 18 AraduMAPK, and 18 AraipMAPK proteins in A. hypogaea, A. duranensis, and A. ipaensis, respectively. These MAPK proteins exhibited diverse physicochemical properties and gene structures. We constructed a maximum likelihood-based phylogenetic tree, categorising the MAPK proteins in Arachis species, Arabidopsis thaliana, and Medicago truncatula, into five distinct groups. Gene structure analysis indicated substantial exon-intron variation, implying potential regulatory complexity and alternative splicing mechanisms. Transcriptome data analysis across multiple major organ and tissue types revealed differential expression patterns, with certain AhMAPK genes showing strong tissue-specific expression, particularly in leaves, roots, and reproductive organs. The inclusion of diploid progenitors provided insights into the evolutionary trajectory and functional conservation of MAPK genes in Arachis species. These findings contribute to a deeper understanding of MAPK-mediated signalling in peanuts and offer a genetic foundation for future studies aimed at improving stress resilience and crop performance. The identified MAPK genes present valuable targets for genetic engineering and molecular breeding programmes to enhance peanut productivity and adaptability to environmental stresses.
References
Andreasson, E. & Ellis, B., 2010. Convergence and specificity in the Arabidopsis MAPK nexus. Trends in Plant Science, 15(2), pp.106-113. doi: 10.1016/j.tplants.2009.12.001
Avruch, J., 2007. MAP kinase pathways: the first twenty years. Biochimica et biophysica acta, 1773(8), pp.1150-1160. doi: 10.1016/j.bbamcr.2006.11.006
Barrett, T. et al., 2013. NCBI GEO: archive for functional genomics data sets - update. Nucleic Acid Research, 41(Database issue), pp.D991-995. doi: 10.1093/nar/gks1193
Bertioli, D.J. et al., 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48(4), pp.438-446. doi: 10.1038/ng.3517
Bertioli, D.J. et al., 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51(5), pp.877-884. doi: 10.1038/s41588-019-0405-z
Bertioli, D.J. et al., 2020. Evaluating two different models of peanut's origin. Nature Genetics, 52(6), pp.557-559. doi:10.1038/s41588-020-0626-1
Brasileiro, A.C.M. et al., 2023. The stilbene synthase family in Arachis: A genome-wide study and functional characterization in response to stress. Genes (Basel), 14(12), 2181. doi: 10.3390/genes14122181
Cao, P.B., 2022. In silico structural, evolutionary, and expression analysis of small heat shock protein (shsp) encoding genes in cocoa (Theobroma cacao L.). The Journal of Animal and Plant Sciences, 32(5), pp.1394-1402. doi: 10.36899/JAPS.2022.5.0546
Chen, L. et al., 2012. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One, 7(10), e46744. doi:10.1371/journal.pone.0046744
Chu, H.D. et al., 2024. Identification of two enzymes for trehalose synthesis and their potential function in growth and development in peanut (Arachis hypogaea). Journal of Tropical Life Science, 14(1), pp.83-94. doi: 10.11594/jtls.14.01.10
Clevenger, J. et al., 2016. A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science, 7, 1446. doi: 10.3389/fpls.2016.01446
Dash, S. et al., 2016. PeanutBase and other bioinformatic resources for peanut. In Peanuts: Genetics, processing, and utilization. AOCS Press, pp.241-252. doi: 10.1016/B978-1-63067-038-2.00008-3
Fan, Z. et al., 2023. Genome-wide identification of the MPK gene family and expression analysis under low-temperature stress in the banana. Plants (Basel), 12(16), 2926. doi: 10.3390/plants12162926
García, A.V. et al., 2021. Genomic affinity in hybrids of B-genome Arachis species: new genetic resources toward peanut improvement. Crop Breeding and Applied Biotechnology, 21(3), e38292139. doi: 10.1590/1984-70332021v21n3a48
Gasteiger, E. et al., 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), pp.3784-3788. doi: 10.1093/nar/gkg563
Gasteiger, E. et al., 2005. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook. Humana Press, pp.571-607. doi: 10.1385/1-59259-890-0:571
Group, M., 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 7(7), pp.301-308. doi: 10.1016/s1360-1385(02)02302-6
Hall, T.A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, pp.95-98. doi: 10.14601/Phytopathol_Mediterr-14998u1.29
Hill, G.M., 2002. Peanut by-products fed to cattle. The Veterinary clinics of North America: Food animal practice, 18(2), pp.295-315. doi: 10.1016/s0749-0720(02)00019-1
Hu, B. et al., 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), pp.1296-1297. doi: 10.1093/bioinformatics/btu817
Jagodzik, P. et al., 2018. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Frontiers in Plant Science, 9, 1387. doi: 10.3389/fpls.2018.01387
Jonwal, S. et al., 2023. Regulation of photosynthesis by mitogen-activated protein kinase in rice: antagonistic adjustment by OsMPK3 and OsMPK6. Physiology and Molecular Biology of Plants, 29(9), pp.1247-1259. doi: 10.1007/s12298-023-01383-9
Kong, F. et al., 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene, 499(1), pp.108-120. doi: 10.1016/j.gene.2012.01.048
Kosev, V.I. & Vasileva, V.M., 2019. Morphological characterization of Grass pea (Lathyrus sativus L.) Varieties. Journal of Agricultural Sciences - Sri Lanka, 14(2), pp.67-76. doi: 10.4038/jas.v14i2.8509
La, H.V. et al., 2022a. SWEET gene family in sugar beet (Beta vulgaris): Genome-wide survey, phylogeny and expression analysis. Pakistan journal of biological sciences, 25(5), pp.387-395. doi: 10.3923/pjbs.2022.387.395
La, H.V. et al., 2022b. Insights into the gene and protein structures of the CaSWEET family members in chickpea (Cicer arietinum), and their gene expression patterns in different organs under various stress and abscisic acid treatments. Gene, 819, 146210. doi: 10.1016/j.gene.2022.146210
Le, M.T. et al., 2022. Genome-wide identification and analysis of genes encoding putative heat shock protein 70 in papaya (Carica papaya). Pakistan journal of biological sciences, 25(6), pp.468-475. doi:10.3923/pjbs.2022.468.475
Li, M. et al., 2022. Genome-wide identification and expression of MAPK gene family in cultivated strawberry and their involvement in fruit developing and ripening. International Journal of Molecular Sciences, 23(9), 5201. doi: 10.3390/ijms23095201
Li, X. et al., 2014. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnology, 14, 58. doi:10.1186/1472-6750-14-58
Lin, L. et al., 2021. Plant mitogen-activated protein kinase cascades in environmental stresses. International Journal of Molecular Sciences, 22(4), 1543. doi: 10.3390/ijms22041543
Liu, Y. et al., 2013. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Molecular Biology Reporter, 31(6), pp.1446-1460. doi: 10.1007/s11105-013-0623-y
Majeed, Y. et al., 2022. Functional analysis of mitogen-activated protein kinases (MAPKs) in potato under biotic and abiotic stress. Molecular Breeding, 42(6), 31. doi: 10.1007/s11032-022-01302-y
Neupane, A. et al., 2013. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus. Plant Signaling & Behavior, 8(11), e27189. doi: 10.4161/psb.27189
Niekerk, L.A. et al., 2024. Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. Plant, Cell & Environment, 47(8), pp.2793-2810. doi: 10.1111/pce.14926
Opdenakker, K. et al., 2012. Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. International Journal of Molecular Sciences, 13(6), pp.7828-7853. doi: 10.3390/ijms13067828
Reyna, N.S. & Yang, Y., 2006. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Molecular Plant-Microbe Interactions, 19(5), pp.530-540. doi: 10.1094/mpmi-19-0530
Singh, A. et al., 2018. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene, 13, pp.25-35. doi:10.1016/j.plgene.2017.12.001
Song, A. et al., 2018. Comprehensive analysis of mitogen-activated protein kinase cascades in Chrysanthemum. PeerJ, 6, e5037. doi: 10.7717/peerj.5037
Taj, G. et al., 2010. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signaling & Behavior, 5(11), pp.1370-1378. doi: 10.4161/psb.5.11.13020
Tamura, K. et al., 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), pp.3022-3027. doi: 10.1093/molbev/msab120
Thompson, J. et al., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, pp.4876 - 4882.
Thompson, J.D. et al., 2002. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, Chapter 2, Unit 2.3. doi: 10.1002/0471250953.bi0203s00
Toomer, O.T., 2018. Nutritional chemistry of the peanut (Arachis hypogaea). Critical Reviews in Food Science and Nutrition, 58(17), pp.3042-3053. doi: 10.1080/10408398.2017.1339015
Wadood, S.A. et al., 2022. Geographical origin classification of peanuts and processed fractions using stable isotopes. Food Chemistry: X, 16, 100456. doi: 10.1016/j.fochx.2022.100456
Wang, G. et al., 2014. Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biology, 14, 219. doi: 10.1186/s12870-014-0219-1
Wang, J. et al., 2015. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics, 16(1), 386. doi: 10.1186/s12864-015-1621-2
Wang, T. et al., 2022. Genome-wide identification and expression analysis of MAPK gene family in lettuce (Lactuca sativa L.) and functional analysis of LsMAPK4 in high- temperature-induced bolting. International Journal of Molecular Sciences, 23(19). doi: 10.3390/ijms231911129
Zhang, M. & Zhang, S., 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology , 64(2), pp.301-341. doi: 10.1111/jipb.13215
Zheng, Y.M. et al., 2019. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Ying yong sheng tai xue bao = The journal of applied ecology, 30(3), pp.961-968. doi: 10.13287/j.1001-9332.201903.019
Zhuang, W. et al., 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51(5), pp.865-876. doi: 10.1038/s41588-019-0402-2

