Diversity of Thermophilic Bacteria Isolated from Extreme Environments in Indonesia: A Perspective in Biotechnology Applications

  • Dyah Wulandari Department of Food Technology, Faculty of Agricultural Technology, Soegijapranata Catholic University, Jl. Rm. Hadisoebeno Sosro Wardoyo, Mijen, Semarang, Central Java, Indonesia, 50215; Research Collaboration Center for Thermophilic Enzyme Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, Central Java, Indonesia, 50275. https://orcid.org/0000-0003-0923-8317
  • Anto Budiharjo Biotechnology Study Program, Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia, 50275; Research Collaboration Center for Thermophilic Enzyme Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, Central Java, Indonesia, 50275. https://orcid.org/0000-0002-4815-5138
  • Aurora Awalia Kirana Putri Molecular and Applied Microbiology Laboratory, Center of Research and Services, Diponegoro University, Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, Central Java, Indonesia, 50275. https://orcid.org/0009-0002-7179-6854
  • R. Haryo Bimo Setiarto Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM. 46, KST Soekarno, Cibinong, Bogor, Indonesia,16911 https://orcid.org/0000-0001-6894-7119
Keywords: Indonesian hot springs, Enzymes, Thermophilic bacteria, Thermostable enzymes, Geothermal biotechnology, Microbial diversity

Abstract

Indonesia, located along the Pacific Ring of Fire, hosts abundant geothermal sites and hot springs, creating ideal environments for thermophilic bacteria, which are microorganisms capable of thriving at elevated temperatures. These bacteria are recognized for producing thermostable enzymes, including amylases, proteases, cellulases, xylanases, and lipases, which are highly valuable for various industrial applications. This review compiles and analyses the diversity of thermophilic bacteria isolated from 13 geothermal locations across Indonesia, highlighting their enzymatic capabilities and potential applications in biotechnology. Notable genera include Bacillus, Geobacillus, Pseudomonas, Anoxybacillus, and Thermoanaerobacterium. These isolates demonstrate promising roles in bioenergy production, waste treatment, environmental bioremediation, food processing, agriculture, and pharmaceuticals. Additionally, several strains exhibit the capacity to produce bioactive compounds such as antimicrobial agents and natural pigments. The review also details standardized screening methods using selective solid media and outlines molecular identification techniques, including 16S rRNA gene sequencing and whole genome sequencing. Furthermore, it explores recombinant enzyme technologies applied to thermophiles, enabling enhanced expression, activity, and thermal stability of enzymes for industrial processes. Despite Indonesia's extensive geothermal resources, its microbial biodiversity remains largely untapped. This review not only serves as a scientific inventory of thermophilic strains but also emphasizes their relevance for biotechnological innovations. It aims to support future research, bioprospecting strategies, and industrial applications based on Indonesia’s unique thermophilic microbial diversity, ultimately contributing to sustainable technological advancement and resource utilisation.

References

Agustriana, E. et al., 2023. Optimized expression of large fragment DNA polymerase I from Geobacillus stearothermophilus in Escherichia coli expression system. Preparative Biochemistry & Biotechnology, 53(4), pp.384-393. doi: 10.1080/10826068.2022.2095573

Ahirwar, S. et al., 2017. Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycology, 8(3), pp.125-134. doi: 10.1080/21501203.2017.1337657

Akhtaruzzaman, M. et al., 2012. Isolation and characterization protease enzyme from leguminous seeds. Agricultural Science Research Journals, 2(8), pp.434-440.

Al-Johani, N.B., Al-Seeni, M.N. & Ahmed, Y.M., 2017. Optimization of alkaline α-amylase production by thermophilic Bacillus subtilis. African Journal of Traditional, Complementary and Alternative Medicines, 14(1), pp.288-301. doi: 10.21010/ajtcam.v15i4.6

Al‐Qodah, Z., 2006. Production and characterization of thermostable α‐amylase by thermophilic Geobacillus stearothermophilus. Biotechnology Journal: Healthcare Nutrition Technology, 1(7‐8), pp.850-857. doi: 10.1002/biot.200600033

Alam, M.S., Sarjono, P.R. & Aminin, A.L., 2013. Isolasi Bakteri Selulolitik Termofilik Kompos Pertanian Desa Bayat, Klaten, Jawa Tengah. Chem Info, 1(1), pp.90-195.

Alexandraki, V. et al., 2019. Comparative genomics of Streptococcus thermophilus support important traits concerning the evolution, biology and technological properties of the species. Frontiers in microbiology, 10, 2916. doi: 10.3389/fmicb.2019.02916

Allioux, M. et al., 2022. Genome analysis of a new sulphur disproportionating species Thermosulfurimonas strain F29 and comparative genomics of sulfur-disproportionating bacteria from marine hydrothermal vents. Microbial Genomics, 8(9), 000865. doi: 10.1099/mgen.0.000865

Allison, S.D., AdeelaYasid, N. & Shariff, F.M., 2023. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. Journal of Microbiology and Biotechnology, 34(2), 436. doi: 10.4014/jmb.2306.06050.

Alrumman, S.A. et al., 2019. Antimicrobial activity and GC-MS analysis of bioactive constituents of Thermophilic bacteria isolated from Saudi hot springs. Arabian Journal for Science and Engineering, 44, pp.75-85. doi: 10.1007/s13369-018-3597-0

Altinok, F. et al., 2023. Application of Anoxybacillus gonensins UF7 lipase as a catalyst for biodiesel production from waste frying oils. Fuel, 334, 126672. doi: 10.1016/j.fuel.2022.126672

Aragaw, T. A., Bogale, F. M. & Gessesse, A., 2022. Adaptive response of thermophiles to redox stress and their role in the process of dye degradation from textile industry wastewater. Frontiers in Physiology, 13, 908370. doi: 10.3389/fphys.2022.908370

Ardhi, A. et al., 2020. Molecular identification of amylase-producing thermophilic bacteria isolated from Bukit Gadang Hot Spring, West Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(3), pp.994-1000. doi: 10.13057/biodiv/d210319

Ariaeenejad, S. & Motahar, S.F.S., 2025. A collagen-hydrolyzing halotolerant protease for enhanced dye decolorization and toxicity reduction in high-salinity textile tannery wastewater. Journal of Hazardous Materials Advances, 18, 100669. doi: 10.1016/j.hazadv.2025.100669

Ariaeenejad, S. et al., 2022. Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. Science of The Total Environment, 815, 152796. doi: 10.1016/j.scitotenv.2021.152796

Asgher, M. et al., 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of food engineering, 79(3), pp.950-955. doi: 10.1016/j.jfoodeng.2005.12.053

Atomi, H. et al., 2004. Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea, 1(4), pp.263-267. doi: 10.1155/2004/204953

Babbar, S.B. & Jain, R., 2006. Xanthan gum: an economical partial substitute for agar in microbial culture media. Current microbiology, 52, pp.287–292. doi: 10.1007/s00284-005-0225-5.

Baker, B.A. et al., 2021. Efficiency of thermophilic bacteria in wastewater treatment. Arabian Journal for Science and Engineering, 46, pp.123-128. doi: 10.1007/s13369-020-04830-x

Becker, A. et al., 1998. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology, 50(2), pp.145-152. doi: 10.1007/s002530051269.

Benammar, L. et al., 2020. Diversity and enzymatic potential of thermophilic bacteria associated with terrestrial hot springs in Algeria. Brazilian Journal of Microbiology, 51(4), pp.1987-2007. doi: 10.1007/s42770-020-00376-0.

Bhalla, A. et al., 2014. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresource Technology, 165, pp.314-318. doi: 10.1016/j.biortech.2014.03.112.

Briones, C., 2023. Polymerase Chain Reaction. In Encyclopedia of Astrobiology. Berlin, Heidelberg: Springer Berlin Heidelberg, pp.2441-2442.

Brock, T.D. & Freeze, H., 1969. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. Journal of bacteriology, 98(1), pp.289-297. doi: 10.1128/jb.98.1.289-297.1969

Budiharjo, A. et al., 2024. Bioprospecting and Molecular Identification of Amylase and Cellulase Producing Thermophilic Bacteria from Sediment of Nglimut Hot Springs, Kendal Regency. Journal of Tropical Biodiversity and Biotechnology, 9(3), 86756. doi: 10.22146/jtbb.86756.

Burke, V. et al., 1991. Longitudinal studies of virulence factors of Pseudomonas aeruginosa in cystic fibrosis. Pathology, 23(2), pp.145-148. doi: 10.3109/00313029109060814.

Cao, Y. et al., 2019. Contributions of thermotolerant bacteria to organic matter degradation under a hyperthermophilic pretreatment process during chicken manure composting. BioResources, 14(3), pp.6747-6766.

Cardona-Cardona, V.Z., 2010. Molecular analysis, physiological study and biotechnological capabilities of Blue Pigmented Bacteria from Puerto Rico. University of Puerto Rico.

Carré, L. et al., 2022. Relevance of earth-bound extremophiles in the search for extraterrestrial life. Astrobiology, 22(3), pp.322-367.

Challouf, R. et al., 2012. Antibacterial, antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp. African Journal of Biotechnology, 11(82), pp.14844-14849. doi: 10.5897/AJB12.1118.

Chan, C.S. et al., 2017. Effects of physiochemical factors on prokaryotic biodiversity in Malaysian circumneutral hot springs. Frontiers in Microbiology, 8, 1252. doi: 10.3389/fmicb.2017.01252.

Chen, G. et al., 2021. Detoxification of azo dye Direct Black G by thermophilic Anoxybacillus sp. PDR2 and its application potential in bioremediation. Ecotoxicology and Environmental Safety, 214, 112084. doi: 10.1016/j.ecoenv.2021.112084

Ching, X.J. et al., 2022. Complete genome sequence data of tropical thermophilic bacterium Parageobacillus caldoxylosilyticus ER4B. Data in Brief, 40, 107764. doi: 10.1016/j.dib.2021.107764

Christensen, L.F. et al., 2022. Extracellular microbial proteases with specificity for plant proteins in food fermentation. International Journal of Food Microbiology, 381, 109889. doi: 10.1016/j.ijfoodmicro.2022.109889

Cowan, D.A., 1994. Industrial enzymes. In Biotechnology: The Science and the Business, 2nd ed. New York, NY, USA: Harwood Academic Publishers.

Cuadros-Orellana, S., Pohlschröder, M. & Durrant, L.R., 2006. Isolation and characterization of halophilic archaea able to grow in aromatic compounds. International Biodeterioration & Biodegradation, 57, pp.151–154. doi: 10.1016/j.ibiod.2005.04.005.

Dai, K. et al., 2023. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses. Biotechnology for Biofuels and Bioproducts, 16(1), 155. doi: 10.1186/s13068-023-02402-3

Das, G. & Prasad, M. P., 2010. Isolation, purification & mass production of protease enzyme from Bacillus subtilis. International Research Journals of microbiology, 1(2), pp.26-31.

Das, N. et al., 2015. Progress in the development of gelling agents for improved culturability of microorganisms. Frontiers in Microbiology, 6, 698. doi: 10.3389/fmicb.2015.00698

D’Souza, D.R. et al., 1997. Isolation of thermophilic bacteria using bacteriological grade agar at temperatures above 80oC. Biotechniques, 22(6), pp.1078. doi: 10.2144/97226bm14.

Deepa, S., Kanimozhi, K. & Panneerselvam, A., 2014. 16S rDNA phylogenetic analysis of actinomycetes isolated from marine environment associated with antimicrobial activities. Journal for Drugs and Medicines, 5(2), pp.43-50.

Devaraj, K. et al., 2019. Production of thermostable multiple enzymes from Bacillus amyloliquefaciens KUB29. Natural product research, 33(11), pp.1674-1677. doi: 10.1080/14786419.2018.1425857

Drejer, E.B. et al., 2018. Genetic tools and techniques for recombinant expression in thermophilic Bacillaceae. Microorganisms, 6(2), 42. doi: 10.3390/microorganisms6020042.

Dresler, K., et al., 2006. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess and Biosystems Engineering, 29, pp.169-183. doi: 10.1007/s00449-006-0069-9.

Ebara, S. & Shigemori, Y., 2008. Alkali-tolerant high-activity catalase from a thermophilic bacterium and its overexpression in Escherichia coli. Protein Expression and Purification, 57(2), pp.255-260. doi: 10.1016/j.pep.2007.09.015

Fachrial, E.D.Y. et al., 2020. Molecular identification of cellulase and protease producing Bacillus tequilensis UTMSA14 isolated from the geothermal hot spring in Lau Sidebuk Debuk, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(10), pp.4719-4725. doi: 10.13057/biodiv/d211035

Fall, I. et al., 2023. A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Applied Microbiology and Biotechnology, 107(1), pp.201-217. doi: 10.1007/s00253-022-12263-9

Fang, Y. et al., 2021. Preparation and characterization of a novel thermostable lipase from Thermomicrobium roseum. Catalysis Science & Technology, 11(22), pp.7386-7397. doi: 10.1039/D1CY01486B

Fazal, B.Z. et al., 2022. Screening, isolation, and characterization of amylase-producing bacteria from Poring Hot Spring Sabah, Malaysia. Biodiversitas Journal of Biological Diversity, 23(6), pp.2807-2815. doi:10.13057/biodiv/d230604

Fincan, S.A. & Enez, B., 2014. Production, purification, and characterization of thermostable α‐amylase from thermophilic Geobacillus stearothermophilus. Starch‐Stärke, 66(1-2), pp. 182-189. doi: 10.1002/star.201200279

Finch, A.J. & Kim, J.R., 2018. Thermophilic proteins as versatile scaffolds for protein engineering. Microorganisms, 6(4), 97. doi: 10.3390/microorganisms6040097

Fossi, B.T. et al., 2014. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnology Reports, 4, pp.99-106. doi: 10.1016/j.btre.2014.09.004.

Frolov, E.N. et al., 2018. Desulfothermobacter acidiphilus gen. nov., sp. nov., a thermoacidophilic sulfate-reducing bacterium isolated from a terrestrial hot spring. International Journal of Systematic and Evolutionary Microbiology, 68(3), pp.871-875. doi: 10.1099/ijsem.0.002599

Geraldi, A. et al., 2022. Isolation and characterization of thermophilic Bacillus subtilis subsp. inaquosorum CGR-1 from Cangar hot springs. Journl of Bio-Molecule Research and Engineering, 1(1), pp.32-39. doi: 10.20473/jbiome.v1i1.35860.

Ginting, E.L. et al., 2021. Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 22(6), pp.3326-3332. doi.: 10.13057/biodiv/d220638.

Gramza-Michałowska, A. & Stachowiak, B., 2010. The antioxidant potential of carotenoid extract from Phaffia rhodozyma. Acta Scientiarum Polonorum Technologia Alimentaria, 9(2), pp.171-188.

Gurumurthy, D.M. et al., 2020. Cyanoxanthomycin, a Bacterial Antimicrobial Compound Extracted from Thermophilic Geobacillus sp. Iso5. Jordan Journal of Biological Sciences, 13, pp.725-729.

Habibie, F.M., Wardani, A.K. & Nurcholis, M., 2014. Isolation and molecular identification of thermophilic microorganism producing xylanase from Hot Mud Disaster Lapindo. Jurnal Pangan dan Agroindustri, 2(4), pp.231-238.

Hafsan, H., Ramadani, K. & Abbas, A., 2021. Protease Activity Of Thermophilic Bacteria From Lejja Hot Springs In Soppeng South Sulawesi. JST (Jurnal Sains dan Teknologi), 10(2), pp.211-219.

Hamana, K. & Matsuzaki, S., 1985. Further study on polyamines in primitive unicellular eukaryotic algae. The Journal of Biochemistry, 97(5), pp.1311-1315. doi: 10.1093/oxfordjournals.jbchem.a135182.

Heidari, F. et al., 2012. Antimicrobial activity of cyanobacteria isolated from hot spring of Geno. Middle-East Journal of Scientific Research, 12(3), pp.336-339. doi: 10.5829/idosi.mejsr.2012.12.3.64169.

Hreggvidsson, G.O. et al., 2012. Microbial speciation in the geothermal ecosystem. In Adaption of microbial life to environmental extremes: novel research results and application. Vienna: Springer Vienna, pp.37-67. doi: 10.1007/978-3-211-99691-1_3.

Ifandi, S. & Alwi, M., 2015. Isolation of thermophilic bacteria from Bora hot springs in Central Sulawesi. Biosaintifika: Journal of Biology & Biology Education, 10(2), pp.291-297. doi: 10.15294/biosaintifika.v10i2.14905.

Indriati, G. & Megahati, R.R.P., 2018. Isolation of thermophilic bacteria and optimizing the medium growth conditions. International Journal of Current Microbiology and Applied Science, 7(1), pp.1457-1464. doi: 10.20546/ijcmas.2018.701.177

Iqbal, I. et al., 2015. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus. Journal of Basic Microbiology, 55(2), pp.160-171. doi: 10.1002/jobm.201400190

Irdawati, I. et al., 2018. Screening of Thermophilic Bacteria Produce Xylanase from Sapan Sungai Aro Hot Spring South Solok. IOP Conference Series: Materials Science and Engineering, 335(1), 012021. doi: 10.1088/1757-899X/335/1/012021.

Irdawati, I. et al., 2023. Effect of the Thermophilic Bacterial Biculture Consortium from Mudiak Sapan Hot Springs on Biofuel Production. Jurnal Penelitian Pendidikan IPA, 9(10), pp.9032-9037. doi: 10.29303/jppipa.v9i10.3597

Isono, K. et al., 1967. Studies on polyoxins, antifungal antibiotics: Part v. isolation and characterization of polyoxins c, d, e, f, g, h and i. Agricultural and Biological Chemistry, 31(2), pp.190-199. doi: 10.1080/00021369.1967.10858788

Jabeen, F. et al., 2019. Isolation of thermophilic Anoxybacillus beppuensis JF84 and production of thermostable amylase utilizing agro–dairy wastes. Environmental Progress & Sustainable Energy, 38(2), pp.417-423. doi: 10.1002/ep.12991

Jain, R., Anjaiah, V. & Babbar, S.B., 2005. Guar gum: a cheap substitute for agar in microbial culture media. Letters in Applied Microbiology, 41, pp.345–349. doi: 10.1111/j.1472-765X.2005.01760.x.

Jain, R., 2011. Evaluation of blends of alternative gelling agents with agar and development of xanthagar, a gelling mix, suitable for plant tissue culture media. Asian Journal of Biotechnology, 3, pp.153-164. doi: 10.3923/ajbkr.2011.153.164.

Jeyabalan, J., Veluchamy, A. & Narayanasamy, S., 2025. Production optimization, characterization, and application of a novel thermo-and pH-stable laccase from Bacillus drentensis 2E for bioremediation of industrial dyes. International Journal of Biological Macromolecules, 308(Pt 3), 142557. doi: 10.1016/j.ijbiomac.2025.142557

Jia, X. et al., 2016. Cloning, expression, and characterization of a novel thermophilic monofunctional catalase from Geobacillus sp. CHB1. BioMed Research International, 2016(1), 7535604. doi: 10.1155/2016/7535604.

Johnvesly, B. & Naik, G.R., 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process biochemistry, 37(2), pp.139-144. doi: 10.1016/S0032-9592(01)00191-1

Jones, K.L., 1948. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of Bacteriol, 57, pp.141–145. doi: 10.1128/jb.57.2.141-145.1949.

Kagawa, M. et al., 1999. Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium. Archives of Biochemistry and Biophysics, 362(2), pp.346-355. doi: 10.1006/abbi.1998.1041.

Kambourova, M., 2018. Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Engineering in Life Sciences, 18(11), pp.758-767. doi: 10.1002/elsc.201800022.

Kang, K.S. et al., 1982. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Applied and Environental Microbiology, 43, pp.1086–1091. doi: 10.1128/aem.43.5.1086-1091.1982.

Karaseva, A.I. et al., 2024. Microbial diversity of hot springs of the Kuril Islands. BMC microbiology, 24(1), 547. doi: 10.1186/s12866-024-03704-8.

Kato, S. et al., 2018. Long-term cultivation and metagenomics reveal ecophysiology of previously uncultivated thermophiles involved in biogeochemical nitrogen cycle. Microbes and environments, 33(1), pp.107-110. doi: 10.1264/jsme2.ME17165

Kaur, S., Vasiljevic, T. & Huppertz, T., 2023. Milk Protein Hydrolysis by Actinidin—Kinetic and Thermodynamic Characterisation and Comparison to Bromelain and Papain. Foods, 12(23), 4248. doi: 10.3390/foods12234248

Kawai, F., Kawabata, T. & Oda, M., 2020. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustainable Chemistry & Engineering, 8(24), pp.8894-8908. doi: 10.1021/acssuschemeng.0c01638

Khan, Z. et al., 2023. Protease from Bacillus subtilis ZMS-2: Evaluation of production dynamics through Response Surface Methodology and application in leather tannery. Journal of King Saud University-Science, 35(4), pp.102643. doi: 10.1016/j.jksus.2023.102643

Kitadokoro, K. et al., 2018. Expression, Purification and Crystallization of Thermostable Mutant of Cutinase Est1 from Thermobifida alba. Advances in Bioscience and Biotechnology, 9(05), 215. doi: 10.4236/abb.2018.95015

Klein, V.J. et al., 2023. Metabolic engineering of thermophilic Bacillus methanolicus for riboflavin overproduction from methanol. Microbial Biotechnology, 16(5), pp.1011-1026. doi: 10.1111/1751-7915.14239

Knapik, K., Becerra, M. & González-Siso, M.I., 2019. Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios Hot Spring in Spain. Scientific Reports, 9(1), pp.11195. doi: 10.1038/s41598-019-47637-z.

Knight, C.A. et al., 2018. The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiological Research, 216, pp.40-46. doi: 10.1016/j.micres.2018.08.001.

Kong, L. et al., 2022. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus. Journal of Dairy Science, 105(8), pp.6499-6512. doi: 10.3168/jds.2021-21409

Koonin, E.V., 2010. The two empires and three domains of life in the postgenomic age. Nature Education, 3(9), 27.

Kristjánsson, J.K. & Hreggvidsson, G.O., 1995. Ecology and habitats of extremophiles. World Journal of Microbiology & Biotechnology, 11(1), pp.17–25. doi: 10.1007/BF00339134

Kuo, S.M. et al., 2014. Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons. Carbohydrate Polymers, 114, pp.230-237. doi: 10.1016/j.carbpol.2014.07.049.

Kusdiyantini, E. et al., 2017. Molecular and biochemical characterization of pink-pigmented thermophile bacteria (GDG IX) from Gedongsongo hot-spring in Bandungan–Semarang. Advanced Science Letters, 23(7), pp.6421-6423. doi: 10.1166/asl.2017.9641

Laksmi, F.A. et al., 2025. A robust strategy for overexpression of DNA polymerase from Thermus aquaticus using an IPTG-independent autoinduction system in a benchtop bioreactor. Scientific Reports, 15(1), 5891. doi: 10.1038/s41598-025-89902-4

Lee, Y.J. et al., 2022. Isolation and characterization of thermophilic bacteria from hot springs in Republic of Korea. Microorganisms, 10(12), pp.2375. doi: 10.3390/microorganisms10122375.

Li, A.N. & Li, D.C., 2009. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. Journal of applied microbiology, 106(2), pp.369-380. doi: 10.1111/j.1365-2672.2008.04042.x

Li, A.N. et al., 2007. Purification and characterization of two thermostable proteases from the thermophilic fungus Chaetomium thermophilum. Journal of Microbiology and Biotechnology, 17(4), pp.624-631.

Li, T. et al., 2023. Effect of inoculating thermophilic bacterial consortia on compost efficiency and quality. Waste Management, 170, pp.341-353. doi: 10.1016/j.wasman.2023.09.023

Lin, C.L. et al., 2022. Towards lager beer aroma improvement via selective amino acid release by proteases during mashing. Journal of the Institute of Brewing, 128(1), pp.15-21. doi: 10.1002/jib.682

Lin, C.L. et al., 2023. Increasing Higher Alcohols and Acetates in Low-Alcohol Beer by Proteases. Molecules, 28(11), pp.4419. doi: 10.3390/molecules28114419

Lines, A.D., 1977. Value of the K+ salt of carageenan as an agar substitute in routine bacteriological media. Applied and Environmental Microbiology, 34, pp.637-639. doi: 10.1128/aem.34.6.637-639.1977.

Lischer, K. et al., 2020. The emergence and rise of indigenous thermophilic bacteria exploration from hot springs in Indonesia. Biodiversitas Journal of Biological Diversity, 21(11), pp.5474-5481. doi: 10.13057/biodiv/d211156.

Lischer, K., 2021. Identification of Thermophilic Bacteria from Tirta Lebak Buana Hot Spring in Serang, Banten, Indonesia. Makara Journal of Technology, 25(3), pp.142-1466. doi: 10.7454/mst.v25i3.3993.

Liu, D., Guo, Y. & Ma, H., 2023. Production of value-added peptides from agro-industrial residues by solid-state fermentation with a new thermophilic protease-producing strain. Food Bioscience, 53, pp.102534. doi: 10.1016/j.fbio.2023.102534

Liu, H., Kheirvari, M. & Tumban, E., 2023. Potential applications of thermophilic bacteriophages in one health. International Journal of Molecular Sciences, 24(9), pp.8222. doi: 10.3390/ijms24098222

Lizama, C. et al., 2001. Taxonomic study of extreme halophilic archaea isolated from the “Salar de Atacama”, Chile. Systematic and Applied Microbiology, 24(3), pp.464-474. doi: 10.1078/0723-2020-00053.

López, M. J. et al., 2021. Characterization of thermophilic lignocellulolytic microorganisms in composting. Frontiers in microbiology, 12, 697480. doi: 10.3389/fmicb.2021.697480

Madigan, M.T., Martinko, J.M. & Parker, J., 1997. Brock Biology of Microorganisms, 8th edn, Englewood Cliffs: Prentice-Hall Inc.

Magalhães, A. et al., 2007. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(4), pp.565-575. doi: 10.1016/j.cbpa.2005.12.033

Mahakhan, P. et al., 2022. Alkaline protease production from Bacillus gibsonii 6BS15-4 using dairy effluent and its characterization as a laundry detergent additive. Journal of Microbiology and Biotechnology, 33(2), pp.195-202. doi: 10.4014/jmb.2210.10007

Mahestri, L., Harpeni, E. & Setyawan, A., 2021. Isolation and Screening of Amylolytic and Proteolytic Thermophilic Bacteria from Way Panas Hot Spring, Kalianda, South Lampung. Jurnal Perikanan dan Kelautan, 26(3), pp.161-168.

Maitig, A.M.A., Alhoot, M.A. & Tiwari, K., 2018. Isolation and screening of extracellular protease enzyme from fungal isolates of soil. Journal of Pure & Applied Microbiology, 12(4), pp.2059-2067. doi: 10.22207/JPAM.12.4.42

Majithiya, V.R. & Gohel, S.D., 2025. Agro-industrial Waste Utilization, Medium Optimization, and Immobilization of Economically Feasible Halo-Alkaline Protease Produced by Nocardiopsis dassonvillei Strain VCS-4. Applied Biochemistry and Biotechnology, 197(1), pp.545-569. doi: 10.1007/s12010-024-05057-4

Maksum, I. P. et al., 2022. Overexpression of soluble recombinant Thermus thermophilus (Tth) DNA polymerase in Escherichia coli BL21 (DE3) using an MBP fusion tag as a solubility enhancer. Journal of Applied Pharmaceutical Science, 12(9), pp.017-024. doi: 10.7324/JAPS.2022.120903

Manalu, J., Rahmawati & Hidayat, N., 2019. Antifungal activity of Actinomycetes isolates from hot springs Ai Sipatn Lotup Sanggau against isolate Hortaea werneckii (T1). Protobiont, 8(1), pp.69-77.

Manikandan, M., Pašić, L. & Kannan, V., 2009. Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology. Bioresource Technology, 100(12), pp.3107-3112. doi: 10.1016/j.biortech.2009.01.033.

Marin-Sanhueza, C. et al., 2022. Stress dependent biofilm formation and bioactive melanin pigment production by a thermophilic bacillus species from Chilean hot spring. Polymers, 14(4), 680. doi: 10.3390/polym14040680

Marteinsson, V.T. et al., 1996. Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiology Ecology, 21(4), pp.255-266. doi: 10.1111/j.1574-6941.1996.tb00122.x.

Masum, M. & Akbar, M.A., 2019. The Pacific ring of fire is working as a home country of geothermal resources in the world. IOP Conference Series: Earth and Environmental Science, 249, 012020. doi: 10.1088/1755-1315/249/1/012020.

Mawati, S.D., Harpeni, E. & Fidyandini, H.P., 2021. Screening of Amylolitic Potential Thermophilic Bacteria From Way Belerang Hot Spring Kalianda Lampung Selatan. Journal of Aquatropica Asia, 6(1), pp.1-7.

McLachlan, J., 1985. Macroalgae (seaweeds): industrial resources and their utilization. Plant Soil, 89, pp.137-157. doi: 10.1007/BF02182240.

Mehta, D. & Satyanarayana, T., 2016. Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Frontiers in Microbiology, 7, 1129. doi: 10.3389/fmicb.2016.01129.

Mevarech, M. & Werczberger, R., 1985. Genetic transfer in Halobacterium volcanii. Journal of Bacteriology, 162, pp.461–462. doi: 10.1128/jb.162.1.461-462.1985.

Mohammad, B.T. et al., 2017. Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. International Journal of Microbiology, (1), pp.6943952. doi: 10.1155/2017/6943952

Moonnee, Y.A. et al., 2021. Keratinolytic protease from Pseudomonas aeruginosa for leather skin processing. Journal of Genetic Engineering and Biotechnology, 19, 53. doi: 10.1186/s43141-021-00149-8

Msarah, M.J. et al., 2020. Optimisation and production of alpha amylase from thermophilic Bacillus spp. and its application in food waste biodegradation. Heliyon, 6(6), e04183. doi: 10.1016/j.heliyon.2020.e04183.

Mudiyanselage, J.M.B.W.W. et al., 2021. Cloning of DNA Polymerase-ǀ Gene from Thermophilic Bacillus licheniformis Strain NWMF1 into an E. coli Expression System. Journal of Microbiology, Biotechnology and Food Sciences, 2021, pp.1317-1319. doi: 10.15414/jmbfs.2019.8.6.1317-1319

Muharni, M., Juswardi, J. & Prihandayani, I., 2013. Isolasi dan identifikasi bakteri termofilik penghasil protease dari sumber air panas Tanjung Sakti Lahat Sumatera Selatan. Prosiding SEMIRATA FMIPA Universitas Lampung, 1(1), pp.139-143.

Murtiyaningsih, H., Arum, L. S. & Anggriawan, R., 2022. Selection of Polymerase-Producing Thermophilic Bacteria from Ijen Crater, East Java. Indonesian Journal of Biotechnology and Biodiversity, 6(1), pp.26-32.

Mushtaq, A. et al., 2024. Cloning, Expression, and Characterization of a Metalloprotease from Thermophilic Bacterium Streptomyces thermovulgaris. Biology, 13(8), 619. doi: 10.3390/biology13080619.

Nababan, M., Gunam, I.B. & Wijaya, I.M., 2019. Produksi enzim selulase kasar dari bakteri selulolitik. Jurnal Rekayasa dan Manajemen Agroindustri, 7(2), pp.190-199.

Nascimento, W.C.A.D. & Martins, M.L.L., 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian journal of microbiology, 35, pp.91-96. doi: 10.1590/S1517-83822004000100015

Neog, P. R., Saini, S. & Konwar, B. K., 2024. Purification, and characterization of detergent-compatible serine protease from Bacillus safensis strain PRN1: A sustainable alternative to hazardous chemicals in detergent industry. Protein Expression and Purification, 219, 106479. doi: 10.1016/j.pep.2024.106479

Nishihara, A. et al., 2018. Nitrogenase activity in thermophilic chemolithoautotrophic bacteria in the phylum Aquificae isolated under nitrogen-fixing conditions from Nakabusa hot springs. Microbes and environments, 33(4), pp.394-401. doi: 10.1264/jsme2.ME18041

Nuritasari, D., Sarjono, P.R. & Aminin, A.L., 2017. Isolasi bakteri termofilik sumber air panas gedongsongo dengan media pengaya MB (Minimal Broth) dan TS (Taoge Sukrosa) serta identifikasi fenotip dan genotip. Jurnal Kimia Sains dan Aplikasi, 20(2), pp.84-91. doi: 10.14710/jksa.20.2.84-91.

Obeidat, M. & Al-Shomali, B., 2023. Moderately Thermophilic Bacteria from Jordanian Hot Springs as Possible Sources of Thermostable Enzymes and Leukemia Cytotoxic Agents. Jordan Journal of Biological Sciences, 16(3), pp.413-424. doi: 10.54319/jjbs/160304

Octarya, Z., Nugroho, T.T. & Nurulita, Y., 2022. Molecular Identification, GC-MS Analysis of Bioactive Compounds and Antimicrobial Activity of Thermophilic Bacteria Derived from West Sumatra Hot-Spring Indonesia. HAYATI Journal of Biosciences, 29(4), pp.549-561. doi: 10.4308/hjb.29.4.549-561

Oda, M. et al., 2021. Cutinases from thermophilic bacteria (actinomycetes): From identification to functional and structural characterization. Methods in Enzymology, 648, pp.159-185. doi: 10.1016/bs.mie.2020.12.031.

Oren, A., 1983. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. International Journal of Systematic and Evolutionary Microbiology, 33(2), pp.381-386. doi: 10.1099/00207713-33-2-381.

Ovando-Chacon, S.L. et al., 2020. Characterization of thermophilic microorganisms in the geothermal water flow of el chichón volcano crater lake. Water, 12(8), 2172. doi: 10.3390/w12082172.

Özdemir, F.İ. et al., 2022. Biochemical characterization and detection of antitumor activity of l-asparaginase from thermophilic Geobacillus kaustophilus DSM 7263T. Protein Expression and Purification, 199, 106146. doi: 10.1016/j.pep.2022.106146

Pan, X. et al., 2019. Study on molecular mechanisms of nattokinase in pharmacological action based on label‐free liquid chromatography–tandem mass spectrometry. Food Science & Nutrition, 7(10), pp.3185-3193. doi: 10.1002/fsn3.1157

Panahi, H.K.S. et al., 2022. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. Bioresource technology, 344, 126212. doi: 10.1016/j.biortech.2021.126212

Panda, M.K., Sahu, M.K. & Tayung, K., 2013. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iranian Journal of Microbiology, 5(2), pp.159-165.

Pandey, A. et al., 2015. Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 C) and Ringigad (80 C) hot springs of Uttarakhand, India. Annals of microbiology, 65, pp.809-816. doi: 10.1007/s13213-014-0921-0

Patil, A. et al., 2024. Biochemical, Molecular Characteristics, and Bioremediation Properties of Mn2+-Resistant Thermophilic Bacillus Strains. Waste and Biomass Valorization, 16, pp.175–190. doi: 10.1007/s12649-024-02713-y

Payne, J.I., Sehgal, S.N. & Gibbons, N.E., 1960. Immersion refractometry of some halophilic bacteria. Canadian Journal of Microbiology, 6(1), pp.9-15. doi: 10.1139/m60-002

Peng, L. et al., 2024. Metagenomic analysis of a thermophilic bacterial consortium and its use in the bioremediation of a petroleum-contaminated soil. Chemosphere, 360, 142379. doi: 10.1016/j.chemosphere.2024.142379

Prajapati, V.D. et al., 2013. An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydrate polymers, 93, pp.670-678. doi: 10.1016/j.carbpol.2013.01.030.

Prasad, P., Tanuja, B.S. & Bedi, S., 2014. Characterization of a novel thermophilic cellulase producing strain Streptomyces matensis strain St-5. International Journal of Current Microbiology and Applied Sciences, 3(3), pp.74-88.

Pugazhendi, A. et al., 2017. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium. Environmental technology, 38(19), pp.2381-2391. doi: 10.1080/09593330.2016.1262460

Putri, L.D., Natsir, H. & Dali, S., 2017. Thermophilic Xylanase Production Rom Isolates of Macula’Hot Springs Bacteria Using Corn Cobs Waste Media. Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 10(2), pp.25-41. doi: 10.20956/ica.v10i2.6652.

Rafiee, Z. et al., 2024. Unveiling Antibacterial Potential and Physiological Characteristics of Thermophilic Bacteria Isolated from a Hot Spring in Iran. Microorganisms, 12(4), 834. doi: 10.3390/microorganisms12040834.

Raj, A. et al., 2018. Production and purification of xylanase from alkaliphilic Bacillus licheniformis and its pretreatment of eucalyptus kraft pulp. Biocatalysis and Agricultural Biotechnology, 15, pp.199-209. doi: 10.1016/j.bcab.2018.06.018.

Rakhmawati, A., Wahyuni, E.T. & Yuwono, T., 2021. Thermophilic bacteria isolated from Mount Merapi, Java, Indonesia as a potential lead bioremediation agent. Biodiversitas Journal of Biological Diversity, 22(6), pp.3101-3110. doi: 10.13057/biodiv/d220612

Ramadhan, R.F., Montesqrit, M. & Marlida, Y., 2020. Production of Thermostable Cellulase Enzyme by NG2 Bacteria Using Various Cellulose Sources from the Agriculture Waste. Jurnal Ilmu dan Teknologi Peternakan, 8(2), pp.64-72. doi: 10.20956/jitp.v8i2.8171.

Rollof, J., HedstrÖM, S.Å. & Nilsson‐Ehle, P., 1987. Lipolytic activity of Staphylococcus aureus strains from disseminated and localized infections. Acta Pathologica Microbiologica Scandinavica Series B: Microbiology, 95(1‐6), pp.109-113. doi: 10.1111/j.1699-0463.1987.tb03096.x.

Saadati, M. et al., 2024. Cloning and Production of Protease Enzyme from Aeribacillus pallidus P18 Strain. Journal of Pure & Applied Microbiology, 18(2), pp.1326-1335. doi: 10.22207/JPAM.18.2.56.

Sabaria, E. et al., 2024. Characterization of thermophilic bacteria from Ie Seum Hot Springs, Aceh Besar, Indonesia as producers of protease enzyme. Biodiversitas Journal of Biological Diversity, 25(5), pp.1867-1874. doi: 10.13057/biodiv/d250502

Sadeepa, D., Sirisena, K. & Manage, P.M., 2022. Diversity of microbial communities in hot springs of Sri Lanka as revealed by 16S rRNA gene high-throughput sequencing analysis. Gene, 812, 146103. doi: 10.1016/j.gene.2021.146103.

Sadettin, S. & Dönmez, G., 2006. Bioaccumulation of reactive dyes by thermophilic cyanobacteria. Process Biochemistry, 41(4), pp.836-841. doi: 10.1016/j.procbio.2005.10.031.

Sahay, S., 1999. The use of psyllium (isubgol) as an alternative gelling agent for microbial culture media. World Journal of Microbiology and Biotechnology, 15, pp.733–735. doi: 10.1023/A:1008954128637.

Sako, Y., et al., 1996. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. International Journal of Systematic and Evolutionary Microbiology, 46(4), pp.1099-1104.

Saksono, B. & Sukmarini, L., 2010. Structural analysis of xylanase from marine Thermophilic Geobacillus stearothermophilus in Tanjung Api, Poso, Indonesia. Hayati Journal of Biosciences, 17(4), pp.189-195. doi: 10.4308/hjb.17.4.189.

Sari, D.C. et al., 2020. Aerial mycelium formation in rare thermophilic Actinobacteria on media solidified with agar and gellan gum. IOP Conference Series: Earth and Environmental Science, 483(1), 012017. doi: 10.1088/1755-1315/483/1/012017.

Satarzadeh, N. et al., 2024. Purification, Characterization, and Assessment of Anticancer Activity of Iron Oxide Nanoparticles Biosynthesized by Novel Thermophilic Bacillus tequilensis ASFS1‏. Journal of Basic Microbiology, 64(9), e2400153. doi: 10.1002/jobm.202400153

Schultz, J. et al., 2022. Unraveling the genomic potential of the thermophilic bacterium Anoxybacillus flavithermus from an Antarctic geothermal environment. Microorganisms, 10(8), 1673. doi: 10.3390/microorganisms10081673.

Sembiring, A., 2019. Isolasi dan uji aktivitas bakteri penghasil selulase asal tanah kandang sapi. BIOSEL (Biology Science and Education): Jurnal Penelitian Science dan Pendidikan, 8(1), pp.21-28. doi: 10.33477/bs.v8i1.843.

Shaeer, A. et al., 2022. Looking into a highly thermostable and efficient recombinant manganese-catalase from Geobacillus thermopakistaniensis. Journal of bioscience and bioengineering, 133(1), pp.25-32. doi: 10.1016/j.jbiosc.2021.09.012

Sharif, S. et al., 2023. Optimization of amylase production using response surface methodology from newly isolated thermophilic bacteria. Heliyon, 9(1), e12901. doi: 10.1016/j.heliyon.2023.e12901

Sharma, A.K. et al., 2015. Isolation and screening of extracellular protease enzyme from bacterial and fungal isolates of soil. International Journal of Scientific Research in Environmental Sciences, 3(9), pp.0334-0340. doi: 10.12983/ijsres-2015-p0334-0340

Sharma, N. & Leung, I. K., 2021. Novel thermophilic bacterial laccase for the degradation of aromatic organic pollutants. Frontiers in Chemistry, 9, 711345. doi: 10.3389/fchem.2021.711345

Sharma, N. et al., 2013. Comparative study of potential cellulolytic and xylanolytic bacteria isolated from compost and their optimization for industrial use. Journal of Agroalimentary Processes and Technologies, 19(3), pp.284-297.

Sharma, V., Ayothiraman, S. & Dhakshinamoorthy, V., 2019. Production of highly thermo-tolerant laccase from novel thermophilic bacterium Bacillus sp. PC-3 and its application in functionalization of chitosan film. Journal of Bioscience and Bioengineering, 127(6), pp.672-678. doi: 10.1016/j.jbiosc.2018.11.008

Shimomura, K. & Kamada, H., 1986. Roles of gelling agents in plant tissue culture. Plant Tissue Culture Letters, 3(1), pp.38-41. doi: 10.5511/plantbiotechnology1984.3.38.

Shirling, E.B. & Gottlieb, D., 1966. Methods for characterization of Streptomyces species. International Journal of Systematic and Evvolutionary Microbiology., 16(3), pp.313–340. doi: 10.1099/00207713-16-3-313.

Shukla, R.J. & Singh, S.P., 2015. Production optimization, purification and characterization of α‐amylase from thermophilic Bacillus licheniformis TSI‐14. Starch‐Stärke, 67(7-8), pp.629-639. doi: 10.1002/star.201500046

Siangbood, H. & Ramanujam, P., 2011. A report on thermophilic cyanophyta (cyanobacteria) from Jakrem Hotspring, Meghalaya. International Journal on Algae, 13(2), pp.178-185. doi: 10.1615/InterJAlgae.v13.i2.70.

Silaban, S., Sihotang, N.I.Y. & Gurning, K., 2021. Isolation and Characterization of Thermophilic Bacteria as Amylase Enzyme Produced by Hots Spring in Rianiate Samosir, Indonesia. Rasayan Journal of Chemistry, 14(2), pp.99-109.

Silva, V. et al., 2022. Optimization of key factors affecting hydrogen and ethanol production from xylose by Thermoanaerobacterium calidifontis VCS1 isolated from vinasse treatment sludge. Waste and Biomass Valorization, 13, pp.1897–1912. doi: 10.1007/s12649-021-01635-3

Simair, A.A. et al., 2017. Production and partial characterization of α‐amylase enzyme from Bacillus sp. BCC 01‐50 and potential applications. BioMed Research International, 2017, 9173040. doi: 10.1155/2017/9173040.

Singh, R. et al., 2025. Development of a process for enhanced biogas production from lignocellulosic feedstocks using an efficient thermophilic inoculum and its metagenomic study. Biocatalysis and Agricultural Biotechnology, 64, 103519. doi: 10.1016/j.bcab.2025.103519

Sittipol, D. et al., 2019. Cloning, expression, purification and characterization of a thermo-and surfactant-stable protease from Thermomonospora curvata. Biocatalysis and Agricultural Biotechnology, 19, 101111. doi: 10.1016/j.bcab.2019.101111

Soy, S., Nigam, V.K. & Sharma, S.R., 2021. Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. Journal of Taibah University for Science, 15(1), pp.730-745. doi: 10.1080/16583655.2021.2002549

Soy, S. et al., 2023. Exploring microbial diversity in hot springs of Surajkund, India through 16S rRNA analysis and thermozyme characterization from endogenous isolates. Scientific Reports, 13(1), 14221. doi: 10.1038/s41598-023-41515-5

Stetter, K.O., 1996. Hyperthermophilic procaryotes. FEMS microbiology reviews, 18(2-3), pp.149-158. doi: 10.1111/j.1574-6976.1996.tb00233.x

Suddin, S. et al., 2019. Molecular barcoding based 16S rRNA gene of Thermophilic bacteria from vulcanic sites, Linow Lake, Tomohon. Materials Science Forum, 967, pp.83-92. doi: 10.4028/www.scientific.net/MSF.967.83.

Sui, B. et al., 2023. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes. Frontiers in Microbiology, 14, 1265139. doi: 10.3389/fmicb.2023.1265139.

Sürmeli, Y., Tekedar, H.C. & Şanlı‐Mohamed, G., 2024. Sequence identification and in silico characterization of novel thermophilic lipases from Geobacillus species. Biotechnology and Applied Biochemistry, 71(1), pp.162-175. doi: 10.1002/bab.2529

Susilowati, P.E. et al., 2012. Produksi Xilanase dari Isolat Sumber Air Panas Sonai, Sulawesi Tenggara, menggunakan Limbah Pertanian. Jurnal Natur Indonesia, 14(3), pp.199-204.

Takami, H. et al., 2004. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Research, 32(21), pp.6292-6303. doi: 10.1093/nar/gkh970.

Tang, Y. et al., 2022. Oral therapy of recombinant Subtilisin QK-2 potentiates thrombolytic effect in a carrageenan-induced thrombosis animal model. Journal of Functional Foods, 88, 104896. doi: 10.1016/j.jff.2021.104896

Tarrahimofrad, H. et al., 2020. Structural and biochemical characterization of a novel thermophilic Coh01147 protease. PLoS One, 15(6), e0234958. doi: 10.1371/journal.pone.0234958.

Thakur, N., Singh, S.P. & Zhang, C., 2022. Microorganisms under extreme environments and their applications. Current Research in Microbial Sciences, 3, 100141. doi: 10.1016/j.crmicr.2022.100141.

Tkáčová, J. et al., 2015. Screening of carotenoid-producing strains isolated from natural sources. Acta Chimica Slovaca, 8(1), pp.34-38. doi: 10.1515/acs-2015-0007.

Torreblanca, M. et al., 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Systematic and Applied Microbiology, 8(1-2), pp.89-99. doi: 10.1016/S0723-2020(86)80155-2

Uddin, M.E. et al., 2014. Isolation and characterization of proteases enzyme from locally isolated Bacillus sp. American Journal of Life Sciences, 2(6), pp.338-344. doi: 10.11648/j.ajls.20140206.12

Ullah, I. et al., 2021. Identification and characterization of thermophilic amylase producing bacterial isolates from the brick kiln soil. Saudi Journal of Biological Sciences, 28(1), pp.970–979. doi: 10.1016/j.sjbs.2020.11.017

Umezawa, H. et al., 1965. A new antibiotic, kasugamycin. The Journal of Antibiotics, Series A, 18(2), pp.101-103. doi: 10.11554/antibioticsa.18.2_101

Usman, N.J. et al., 2023. Characterization of recombinant cutinase from Thermobifida cellulosilytica and its application in tomato cutin degradation. Biocatalysis and Agricultural Biotechnology, 47, 102603. doi: 10.1016/j.bcab.2023.102603

Vaidya, A. et al., 2018. Comparative analysis of thermophilic proteases. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 4, pp.65-91. doi: 10.26479/2018.0406.06

Verma, A. et al., 2020. Halocatena pleomorpha gen. nov. sp. nov., an extremely halophilic archaeon of family Halobacteriaceae isolated from saltpan soil. International Journal Systematic and Evolutinary Microbiolology, 70(6), pp.3693–3700. doi: 10.1099/ijsem.0.004222.

Verma, J.P. et al., 2018. Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh region of India. Frontiers in Microbiology, 9, 1293. doi: 10.3389/fmicb.2018.01293

von Hegner, I., 2020. Extremophiles: a special or general case in the search for extra-terrestrial life?. Extremophiles, 24(1), pp.167-175. doi: 10.1007/s00792-019-01144-1

Vora, J.U., Jain, N.K. & Modi, H.A., 2014. Extraction, Characterization and Application studies of red pigment of halophile Serratia marcescens KH1R KM035849 isolated from Kharaghoda soil. International Journal of Pure & Applied Bioscience, 2(6), pp.160-168.

Wahyuna, D., Agustien, A. & Periadnadi., 2012. Isolasi Dan Karakterisasi Bakteri Termo-Proteolitik Sumber Air Panas Sungai Medang, Sungai Penuh, Jambi. Jurnal Biologi Universitas Andalas, 1(2), pp.93-98. doi: 10.25077/jbioua.1.2.%25p.2012.

Wang, G. et al., 2022. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. International Journal of Molecular Sciences, 23(23), 14969. doi: 10.3390/ijms232314969.

Weber, G., Bornscheuer, U.T. & Wei, R., 2021. Enzymatic Plastic Degradation, Cambridge, M.A: Academic Press.

Welday, G.T., Abera, S. & Baye, K., 2014. Isolation and characterization of thermo-stable fungal alpha amylase from geothermal sites of Afar, Ethiopia. International Journal of Advances in Pharmaceutical Research, 3(1), pp.102-127.

Wezyah, A., 2013. Produksi Enzim Selulase dari Aspergillus niger dan Kemampuannya Menghidrolisis Jerami Padi. Universitas Andalas, Padang.

Widiana, D. R. et al., 2022. Purification and characterization of thermostable alpha‐amylase from Geobacillus sp. DS3 from Sikidang Crater, Central Java, Indonesia. Indonesian Journal of Biotechnology, 27(4), pp.212-218. doi: 10.22146/ijbiotech.71643

Wirajana, I. N., et al., 2024. Prokaryotic communities profiling of Indonesian hot springs using long-read Oxford Nanopore sequencing. BMC Research Notes, 17(1), 286. doi: 10.1186/s13104-024-06941-2

Witasari, L.D. et al., 2010. Cloning of thermostable DNA polymerase gene from a thermophilic Brevibacillus sp. isolated from Sikidang Crater, Dieng Plateu, Central Java. Indonesian Journal of Biotechnology, 15(2), pp.72-78.

Xie, G. et al., 2019. Heterologous expression and characterization of a novel subtilisin-like protease from a thermophilic Thermus thermophilus HB8. International Journal of Biological Macromolecules, 138, pp.528-535. doi: 10.1016/j.ijbiomac.2019.07.101

Yadav, A.N. et al., 2015. Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Scientific Reports, 5(1), 12293. doi: 10.1038/srep12293.

Yadav, S.C., Pande, M. & Jagannadham, M.V., 2006. Highly stable glycosylated serine protease from the medicinal plant Euphorbia milii. Phytochemistry, 67(14), pp.1414-1426. doi: 10.1016/j.phytochem.2006.06.002

Yang, X. et al., 2020. Facile one-pot immobilization of a novel thermostable carboxylesterase from Geobacillus uzenensis for continuous pesticide degradation in a packed-bed column reactor. Catalysts, 10(5), 518. doi: 10.3390/catal10050518

Yang, X. et al., 2021. Assessment of the production of Bacillus cereus protease and its effect on the quality of ultra-high temperature-sterilized whole milk. Journal of Dairy Science, 104(6), pp.6577-6587. doi: 10.3168/jds.2020-19818

Yildiz, S.Y., 2024. Exploring the hot springs of golan: a source of thermophilic bacteria and enzymes with industrial promise. Current Microbiology, 81(4), 101. doi: 10.1007/s00284-024-03617-9

Zafrida, S. et al., 2022. Optimization of crude protease production from Bacillus thuringiensis HSFI-12 and thrombolytic activity its enzyme dialysate. Trends in Sciences, 19(23), pp.1952-1952. doi: 10.48048/tis.2022.1952

Zalma, S.A. & El-Sharoud, W.M., 2021. Diverse thermophilic Bacillus species with multiple biotechnological activities are associated within the Egyptian soil and compost samples. Science Progress, 104(4), 00368504211055277. doi: 10.1177/00368504211055277

Zeldes, B.M. et al., 2015. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 6, 1209. doi: 10.3389/fmicb.2015.01209.

Zhang, J. et al., 2024. Effects of thermophilic bacteria inoculation on maturity, gaseous emission and bacterial community succession in hyperthermophilic composting. Science of The Total Environment, 927, 172304. doi: 10.1016/j.scitotenv.2024.172304

Zhang, J. et al., 2025. Enzymatic anti-felting finishing of the dyed woolen textiles through the collaborative action of mild reduction and protease treatment. International Journal of Biological Macromolecules, 307, 142160. doi: 10.1016/j.ijbiomac.2025.142160

Zhang, M., et al. 2008. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis. Science in China Series C: Life Sciences, 51(1), pp.52-59. doi: 10.1007/s11427-008-0009-9

Zhang, X. et al., 2024. Study on activation strategy and effect of protease activity during the post-processing stage of dry-cured meat based on electrical stimulation. Food Control, 161, 110363. doi: 10.1016/j.foodcont.2024.110363

Zhu, D. et al., 2020. Recent development of extremophilic bacteria and their application in biorefinery. Frontiers in Bioengineering and Biotechnology, 8, 483. doi: 10.3389/fbioe.2020.00483

Zhu, N. et al., 2021. Thermal pretreatment enhances the degradation and humification of lignocellulose by stimulating thermophilic bacteria during dairy manure composting. Bioresource Technology, 319, 124149. doi: 10.1016/j.biortech.2020.124149

Published
2025-09-12
How to Cite
Wulandari, D., Budiharjo, A., Putri, A. A. K. and Setiarto, R. H. B. (2025) “Diversity of Thermophilic Bacteria Isolated from Extreme Environments in Indonesia: A Perspective in Biotechnology Applications ”, Journal of Tropical Biodiversity and Biotechnology, 10(3), p. jtbb19548. doi: 10.22146/jtbb.19548.
Section
Review Article