Unveiling Actinobacteria Potency from The Sungai Wain Protected Forest, East Kalimantan, Indonesia: A Promising Source of Antibacterial, Anti-Biofilm, and Antioxidant Compounds
Abstract
Actinobacteria are Gram-positive bacteria widely distributed in soil environments and are well known for producing diverse bioactive compounds. Almost 80 % of the antibiotics in the world are derived from actinobacteria. However, inappropriate use of antibiotics has accelerated antibiotic resistance in many pathogenic bacteria. This study aimed to screen and analyse actinobacteria from the soil of the Sungai Wain protected forest to determine their antimicrobial, antibiofilm, and antioxidant potential. The research involved several stages, including preliminary screening; secondary metabolite production; determination of Minimum Inhibition Concentration (MIC), Minimum Bactericidal Concentration (MBC), anti-biofilm assay, and antioxidant assay; 16S rRNA gene identification; biosynthetic genes detection (PKS and NRPS); and compound profiling using GC-MS. Three isolates, K22S-22, 31, and 36 exhibited the highest inhibition zones, with K22S-22 showing the strongest activity against Staphylococcus aureus and Bacillus subtilis (IC50 = 1.033±0.033 μg mL-1 and 4.155±0.028 μg mL-1, respectively). Strain K22S-22 also displayed antioxidant activity (DPPH IC₅₀ = 67.59 ± 0.020 μg mL⁻¹) and significant antibiofilm effects (inhibition IC₅₀ = 4.541 ± 0.124 μg mL⁻¹; eradication EC₅₀ = 50.71 ± 0.029 μg mL⁻¹). Molecular identification revealed K22S-22 as Streptomyces rapamycinicus NRRL B-5491 (T) with a similarity value of 99.08 %, harbouring PKS-I, PKS-II, and NRPS genes. The Gas Chromatography-Mass Spectroscopy analysis (GC-MS) shows that Hexadecanoic acid is the dominant compound based on its area percentage. These findings highlight Streptomyces K22S-22 is a promising source of metabolites that exhibit potent antimicrobial, antioxidant, and antibiofilm characteristics, presenting opportunities for new therapeutic uses against multidrug-resistant (MDR) pathogens.
References
Agwu, E. et al., 2024. Antioxidant roles/functions of ascorbic acid (vitamin C). In Ascorbic Acid - Biochemistry and Functions. IntechOpen. doi: 10.5772/intechopen.110589.
Amran, S.S.D. et al., 2024. Preparation of biofilm assay using 96-well and 6-well microplates for quantitative measurement and structural characterization: a review. Science Letters, 18(2), pp.21–134. doi: 10.24191/sl.v18i2.27020
Atikana, A. et al., 2021. Uncovering the potential of actinobacterium BLH 1-22 isolated from marine sediment as a producer of antibiotics. IOP Conference Series: Earth and Environmental Science, 948, 012056. doi: 10.1088/1755-1315/948/1/012056
Baliyan, S. et al., 2022. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules (Basel, Switzerland), 27(4), 1326. doi: 10.3390/molecules27041326
Baranasic, D. et al., 2013. Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announcements, 1(4), e00581-13. doi: 10.1128/genomeA.00581-13.
Bircher, L. et al., 2018. Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology. Microbial Biotechnology, 11(1), pp.163-175. doi: 10.1111/1751-7915.12844.
Clinical and Laboratory Standards Institute (CLSI)., 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard. 10thed. CLSI document M07-A10. Clinical and Laboratory Standards Institute, Annapolis Junction, MD.
Delbari, Y. et al., 2023. Identification and anti-bacterial properties of endophytic actinobacteria from Thymes kotschyanus, Allium hooshidaryae, and Cerasus microcarpa. Scientific Reports, 13(1), 13145 . doi: 10.1038/s41598-023-40478-x.
De Simeis, D. & Serra, S. 2021. Actinomycetes: a never-ending source of bioactive compounds - an overview on antibiotics production. Antibiotics, 10(5), 483. doi: 10.3390/antibiotics10050483.
Dhakal, D., Sohng, J.K. & Pandey, R.P. 2019. Engineering actinomycetes for the biosynthesis of macrolactone polyketides. Microbial Cell Factories, 18(1), 137. doi: 10.1186/s12934-019-1184-z.
Ecker, N. et al., 2024. A machine-learning-based alternative to phylogenetic bootstrap. Bioinformatics 40(Issue Supplement_1), pp.i208-i217. doi:10.1093/ bioinformatics/btae255.
Escalante-Rendiz, D. et al., 2019. Molecular Identification of Selected Streptomyces Strains Isolated from Mexican Tropical Soils and Their Anti-Candida Activity. International Journal of Environmental Research and Public Health, 16(11), 1913. doi: 10.3390/ijerph16111913.
Fatima, T. et al., 2024. Molecular marker identification, antioxidant, antinociceptive, and anti-inflammatory responsiveness of malonic acid capped silver nanoparticle. Frontiers in Pharmacology, 14, 1319613. doi: 10.3389/fphar.2023.1319613.
Gago, G. et al., 2018. Components and key regulatory steps of lipid biosynthesis in actinomycetes. In Biogenesis of fatty acids, lipids and membranes. Cham: Springer, pp.1–28. doi: 10.1007/978-3-319-43676-0_65-1
Gumbi, B.P. et al., 2019. Target, suspect and non-target screening of silylated derivatives of polar compounds based on single ion monitoring GC-MS. International Journal of Environmental Research and Public Health, 16(21), 4022. doi: 10.3390/ijerph16214022
Haney, E.F., Trimble, M.J. & Hancock, R.E., 2021. Microtiter plate assays to assess antibiofilm activity against bacteria. Nature Protocols, 16(5), pp.2615-2632. doi: 10.1038/s41596-021-00515-3
Hiltunen, A.K. et al., 2019. Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms, 7(12), 584. doi: 10.3390/microorganisms7120584.
Itam, A. et al., 2021. Comparative study of phytochemical, antioxidant, and cytotoxic activities and phenolic content of Syzygium aqueum (Burm. F. Alston f.) extracts growing in West Sumatra, Indonesia. Scientific World Journal, 2021, 553759. doi:10.1155/2021/5537597.
Janatiningrum, I. et al., 2024. Rhizosphere actinobacteria isolated from Pometia pinnata and its antimicrobial activity. Biodiversitas, 25(3), pp.1007-1014. doi:10.13057/biodiv/d250313.
Kiepas, A.B., Hoskisson, P.A. & Pritchard, L., 2024. 16S rRNA phylogeny and clustering is not a reliable proxy for genome-based taxonomy in Streptomyces. Microbial Genomics, 10(3), 001287. doi: 10.1099/mgen.0.001287
Kim, H.J. & Jang, S., 2018. Optimization of a resazurin-based microplate assay for large-scale compound screenings against Klebsiella pneumoniae. 3 Biotech, 8(1), 3. doi: 10.1007/s13205-017-1034-9.
Kumari, N., Pandey, S. & Meghani, E., 2021. Evaluation of actinomycetes isolated antimicrobial metabolites as potent inhibitors of multidrug resistant organisms. Indian Journal of Geo-Marine Sciences, 50(1), pp.29-36. doi: 10.56042/ijms.v50i01.66080.
Labeda, D.P. et al., 2012. Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek, 101(1), pp.73–104. doi: 10.1007/s10482-011-9656-0.
Mast, Y. & Stegmann, E., 2019. Actinomycetes: the antibiotics producers. Antibiotics, 8(3), 105. doi: 10.3390/antibiotics8030105.
Mohamed, A.M., Elkhateeb, A.W. & Daba, M.G., 2019. The Continuous Story of the Miraculous Drug, Rapamycin. ARC Journal of Pharmaceutical Sciences, 5(2), pp.1-7. doi: 10.20431/2455-1538.0502001.
Nahum, Y. et al., 2025. Biofilms as potential reservoirs of antimicrobial resistance in vulnerable settings. Frontiers in Public Health, 13, 1568463. doi: 10.3389/fpubh.2025.1568463.
National Standardization Agency of Indonesia, 2018. Antioxidant assay method for natural compounds from aquatic sources using DPPH (2,2-diphenyl-1-picrylhydrazyl) spectrophotometry. SNI 8623:2018. Jakarta.
Nurkanto, A. & Agusta, A., 2015. Molecular identification and morphophysiological characterization of Actinomycetes producing antimicrobial compounds. Jurnal Biologi Indonesia, 11(2), pp.193–205.
Nirwati, H. et al., 2022. Soil-derived Streptomyces sp. GMR22 producing antibiofilm activity against Candida albicans: bioassay, untargeted LC-HRMS, and gene cluster analysis. Heliyon, 8, e09333. doi: 10.1016/j.heliyon.2022.e09333
National Institute of Standards and Technology (NIST)., 2023, ‘NIST mass spectral libraries and software [ChemData.NIST.GOV release],’ in NIST Mass Spectrometry Data Center, viewed from https://chemdata.nist.gov
Ouchari, L. et al., 2018. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biology Open, 8(2), bio035410. doi: 10.1242/bio.035410.
Praptiwi, R. et al., 2019. Assessment of actinomycetes isolated from soils on Simeuleu Island as anti-bacterial and antioxidant. AIP Conference Proceedings, 2120, 080011. doi: 10.1063/1.5115749.
Putri, A.L., Arif, N. & Nurkanto, A., 2016. Diversity of Actinomycetes from soil, sediment, and leaf litter samples of Enggano Island, Bengkulu. Berita Biologi, 15(3), pp.217–225.
Ratnakomala, S. et al., 2018. Antimicrobial activity of selenium nanoparticles synthesized by Actinomycetes isolated from Lombok Island soil samples. Jurnal Kimia Terapan Indonesia, 20(1), pp.8-15. doi: 10.14203/jkti.v20i1.374.
Rumbaugh, K.P. & Sauer, K., 2020. Biofilm dispersion. Nature Reviews Microbiology, 18(10), pp.571-586. doi: 10.1038/s41579-020-0385-0.
Sapkota, A. et al., 2020. Isolation, Characterization, and screening of antimicrobial-producing actinomycetes from soil samples. International Journal of Microbiology, 2020, 2716584. doi: 10.1155/2020/2716584.
Saxena, D. et al., 2023. Tackling the outer membrane: Facilitating compound entry into Gram-negative bacterial pathogens. Npj Antimicrobials and Resistance, 1(1), 17. doi: 10.1038/s44259-023-00016-1
Silva, K.R. et al., 2019. Antibacterial and Cytotoxic Activities of Pinus tropicalis and Pinus elliottii Resins and of the Diterpene Dehydroabietic Acid Against Bacteria That Cause Dental Caries. Frontiers in Microbiology, 10, 987. doi: 10.3389/fmicb.2019.00987
Shaaban, M.T., Ghaly, M.F. & Fahmi, S.M., 2021. Anti-bacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology, 61(6), pp.557-568. doi: 10.1002/jobm.202100061.
Singh, T.A. et al., 2021. Tapping into actinobacterial genomes for natural product discovery. Frontiers in Microbiology, 12, 655620. doi:10.3389/fmicb.2021.655620.
Srivastava, A. et al., 2024. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combating biofilm. Archives of Microbiology, 206(5), 212. doi: 10.1007/s00203-024-03938-0
Sukmarini, L., Atikana, A. & Hertiani, T., 2024. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. Journal of Natural Medicines, 78, pp.1–20. doi: 10.1007/s11418-023-01754-2
Tumilaar, S.G. et al., 2024. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024, 5594386. doi: 10.1155/2024/5594386
Toh, S.C. et al., 2023. In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complementary Medicine and Therapies, 23, 85. doi: 10.1186/s12906-023-03914-z.
Venn-Watson, S. & Schork, N.J., 2023. Pentadecanoic Acid (C15:0), an essential fatty acid, shares clinically relevant cell-based activities with leading longevity-enhancing compounds. Nutrients 15(21), 4607. doi: 10.3390/nu15214607.
Zhao, A., Sun, J. & Liu, Y. 2023. Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13, 1137947. doi: 10.3389/fcimb.2023.1137947.

