Sulfuric Acid Resistance of Geopolymer Mortars from Co-combustion Residuals of Bamboo and Kaolin

https://doi.org/10.22146/ajche.49533

Aprilina Purbasari(1*), Tjokorde Walmiki Samadhi(2), Yazid Bindar(3)

(1) Chemical Engineering Program, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung 40132, Indonesia ; Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Tembalang, Semarang 50275, Indonesia
(2) Chemical Engineering Program, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(3) Chemical Engineering Program, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


This study presents an investigation of the durability and microstructure of geopolymer mortars from co-combustion residuals of bamboo and kaolin when exposed to 5% sulfuric acid solution for 2, 4, and 6 weeks, respectively. Geopolymer mortars sized 5 x 5 x 5 cm were prepared from co-combustion residuals of bamboo and kaolin with alkaline activators, i.e. mixture of 10 N potassium hydroxide solution and sodium silicate solution, and cured at 60 oC in oven for 8 hours and then at room temperature for 28 days. Mortars from ordinary Portland cement were also prepared as control mortars. The parameters studied were visual appearance changes, mass changes, compressive strength changes, and microstructure changes. Microstructure changes were examined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results revealed that geopolymer mortars showed better sulfuric acid resistance compared to ordinary Portland cement mortars in terms of lower mass loss and lower compressive strength loss.

Keywords


bamboo, co-combustion residuals, geopolymer, kaolin, mortar, sulfuric acid resistance

Full Text:

PDF


References

  1. Allahverdi,  A.,  and  Skvara,  F.  (2000a). Acidic  corrosion  of  hydrated  cement based materials Part 1. -Mechanism of the phenomenon, Ceram.-Silik., 44(3), 114-120.
  2. Allahverdi,  A., and Skvara, F. (2000b). Acidic  corrosion  of  hydrated  cement based materials Part 2. -Kinetics of the phenomenon   and   mathematical models, Ceram.-Silik., 44(4), 152-160.
  3. Allahverdi,  A.,  and  Skvara,  F.  (2005). Sulfuric acid attack on hardened paste of  geopolymer  cements  Part  1. Mechanism  of  corrosion  at  relatively high   concentrations, Ceram.-Silik., 49(4), 225-229.
  4. Ariffin, M.A.M., Bhutta, M.A.R., Hussin, M.W., Tahir, M. M., and Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer  concrete, Constr.  Build. Mater.,43, 80-86.
  5. ASTM C109M.  (2007). Standard  test method  for  compressive  strength  of hydraulic cement mortars (using 2-in. or [50-mm]  cube  specimens),  ASTM International, West  Conshohocken, USA.
  6. Bakharev,  T.  (2005).  Resistance  of geopolymer  materialsto  acid  attack, Cem. Concr. Res.,35, 658-670.
  7. Bernal,  S.A.,  Rodríguez,  E.D.,  de Gutiérrez, R.M., and Provis, J.L. (2012). Performance  of  alkali-activated  slag mortars exposed to acids, J. Sustainable Cem.-Based Mater.,1(3), 138-151.
  8. Bouguermouh, K., Bouzidi, N., Mahtout, L.,  Pérez-Villarejo,  L.,  and  Martínez-Cartas, M.L. (2017). Effect of acid attack on microstructure and composition of metakaolin-based  geopolymers:  The role of alkaline activator, J. Non-Cryst. Solids,463, 128-137.
  9. Chukanov, N.V. (2014). Infrared spectra of mineral species: Extended library,vol. 1, Springer, Dordrecht, Netherlands.
  10. Davidovits,  J.  (2008). Geopolymer: Chemistry  and  applications,2nd  ed., Institut  Géopolymère,  Saint-Quentin, France.
  11. Duxson,  P.,  Fernández-Jiménez,  A., Provis, J.L., Lukey, G.C., Palomo, A., and van Deventer, J.S.J. (2007). Geopolymer technology: The current state of the art, J. Mater. Sci.,42, 2917-2933.
  12. Febrero,  L.,  Granada,  E.,  Patiño,  D., Eguía,  P.,  and  Regueiro,  A.  (2015).  A comparative  study  of  fouling  and bottom  ash  from  woody  biomass combustion in a fixed-bed small-scale boiler and evaluation of the analytical techniques  used, Sustainability,7, 5819-5837.
  13. Govindarajan, D., and Gopalakrishnan, R.  (2011).    Spectroscopic  studies  on Indian Portland cement hydrated with distilled water and sea water, Frontiers in Science, 1(1), 21-27.
  14. Kim, Y.Y., Lee B.J., Saraswathy, V., and Kwon,  S.J.  (2014).  Strength  and durability   performance   of   alkali-activated  rice  husk  ash  geopolymer mortar, Scientific World J.,2014, 1-10.
  15. Lee,  W.K.W.,  and  van  Deventer,  J.S.J. (2002).  The  effects  of  inorganic  salt contamination  on  the  strength  and durability of geopolymers, Colloids Surf. A Physicochem. Eng. Asp.,211, 115-126.
  16. Llorente,  M.J.F.,  Arocas,  P.D.,  Nebot, L.G., and Garcia, J.E.C. (2008). The effect of the addition of chemical materials on the  sintering  of  biomass  ash, Fuel, 87(12), 2651-2658.
  17. Purbasari, A., Samadhi, T.W., and Bindar, Y.   (2016).   Thermal   and   ash characterization of Indonesian bamboo and itspotential for solid fuel and waste valorization, Int. Journal of Renewable Energy Development, 5(2), 95-100.
  18. Sata,  V.,  Sathonsaowaphak,  A.,  and Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack, Cem. Concr. Compos.,34, 700-708.
  19. van  Deventer,  J.S.J.,  Provis,  J.L.,  and Duxson,  P.  (2012).  Technical  and commercial progress in the adoption of geopolymer  cement, Miner.  Eng., 29,89-104.



DOI: https://doi.org/10.22146/ajche.49533

Article Metrics

Abstract views : 83 | views : 52

Refbacks

  • There are currently no refbacks.