Investigation of Solute Diffusion through Polyvinyl Alcohol/ Polyallylamine Ultrafiltration Membrane

D Ariono(1), A K Wardani(2), P T P Aryanti(3), I G Wenten(4*)

(1) Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia 40132
(2) Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia 40132
(3) Department of Chemical Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jendral Sudirman, Cimahi, Indonesia 40285
(4) Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia 40132; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(*) Corresponding Author


Ultrafiltration membrane has been widely used for several applications due to their high separation capacity, high selectivity, and low operating pressure. In this work, solutes diffusion through polyvinyl alcohol/polyallylamine ultrafiltration membrane was investigated. The membrane was prepared by phase inversion method with glutaraldehyde as crosslinking agent. Meanwhile, NaCl and CaCl2 were used as solutes, either as a single or double solute. The results showed that the increase of polyallylamine concentration led to the increase of membrane swelling degree. For both single and double solutes, diffusion of Na+ and Ca2+ were slightly decreased with the increase of swelling degree. However in double solute diffusion, there was interaction between Na+, Ca2+, and membrane that made Na+ ions moved faster and Ca2+ ions moved slower compared to single solute diffusion. In addition, the increase of solute concentration led to the increase of Na+ diffusion coefficient and the decrease of Ca2+ diffusion coefficient.


polyallylamine, polyvinyl alcohol, swelling degree, solute diffusion, ultrafiltration membrane

Full Text:



  1. Aptel, P., J. Cuny, J. Jozefonvicz, G. Morel and J. Neel (1974). Liquid transport through membranes prepared by grafting of polar monomers onto poly(tetrafluoroethylene) films. II. Some factors determining pervaporation rate and selectivity. J. Appl. Polym. Sci.18(2): 351-364.
  2. Ariono, D., P. T. P. Aryanti, S. Subagjo and I. G. Wenten (2017). The effect of polymer concentration on flux stability of polysulfone membrane, AIP Conf. Proceed. 788(1):030048(1-10).
  3. Aryanti, P. T. P., Khoiruddin and I. G. Wenten (2013). Influence of Additives on Polysulfone-Based Ultrafiltration Membrane Performance during Peat Water Filtration. J. Water Sustain.3(2): 85-96.
  4. Aryanti, P. T. P., R. Yustiana, R. E. D. Purnama and I. G. Wenten (2015). Performance andcharacterization of PEG400 modified PVC ultrafiltration membrane. Membr. Water Treat.6(5): 379-392.
  5. Asatekin, A., S. Kang, M. Elimelech and A. M. Mayes (2007). Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide)comb copolymer additives. J. Membr. Sci.298(1–2): 136-146.
  6. Dejeu, J., B. Lakard, P. Fievet and S. Lakard (2009). Characterization of charge properties of an ultrafiltration membrane modified by surface grafting of poly(allylamine) hydrochloride. J. Colloid Interface Sci.333(1): 335-340.
  7. Du, J. R., S. Peldszus, P. M. Huck and X. Feng (2009). Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Res.43(18): 4559-4568.
  8. Geens, J., B. Van der Bruggen and C. Vandecasteele (2004). Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling. Chem. Eng. Sci.59(5): 1161-1164.
  9. Hamerli, P., T. Weigel, T. Groth and D. Paul (2003). Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials24(22): 3989-3999.
  10. Hamid, N. A. A., A. F. Ismail, T. Matsuura, A. W. Zularisam, W. J. Lau, E. Yuliwati and M. S. Abdullah (2011). Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination273(1): 85-92.
  11. Harsch, A., J. Calderon, R. B. Timmons and G. W. Gross (2000). Pulsed plasma deposition of allylamine on polysiloxane: a stable surface for neuronal cell adhesion. J. Neurosci. Methods98(2): 135-144.
  12. Himma, N. F., S. Anisah, N. Prasetya and I. G. Wenten (2016). Advances in preparation, modification, and application of polypropylene membrane. J. Polym. Eng.36(4): 329-362.
  13. Hwang, S.-T. and K. Kammermeyer (1974). Effect of Thickness on Permeability. Permeability of Plastic Films and Coatings: To Gases, Vapors, and Liquids. H. B. Hopfenberg. Boston, MA, Springer US:197-205.
  14. Izák, P., Š. Hovorka, T. Bartovský, L. Bartovská and J. G. Crespo (2007). Swelling of polymeric membranes in room temperature ionic liquids. J. Membr. Sci.296(1–2): 131-138.
  15. Jose, J., F. Shehzad and M. A. Al-Harthi (2014). Preparation method and physical, mechanical, thermal characterization of poly(vinyl alcohol)/poly(acrylic acid) blends. Polym. Bull.71(11): 2787-2802.
  16. Josh, V., M. Y. Haik, A. I. Ayesh, M. A. Mohsin and Y. Haik (2013). Electrical properties of sorbitol-doped poly(vinyl alcohol)–poly(acrylamide-co-acrylic acid) polymer membranes. J. Appl. Polym. Sci.128(6): 3861-3869.
  17. Kanti, P., K. Srigowri, J. Madhuri, B. Smitha and S. Sridhar (2004). Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep. Purif. Technol.40(3): 259-266.
  18. Khoiruddin, D. Ariono, Subagjo and I. G. Wenten (2017). Surface modification of ion-exchange membranes: Methods, characteristics, and performance. J. Appl. Polym. Sci.: 45540(1-13).
  19. Khoiruddin, I. N. Widiasa and I. G. Wenten (2014). Removal of inorganic contaminants in sugar refining process using electrodeionization. J. Food Eng.133: 40-45.
  20. Kim, D. S., H. B. Park, J. W. Rhim and Y. M. Lee (2005). Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics176(1): 117-126.
  21. Moghimifar, V., A. Raisi and A. Aroujalian (2014). Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J. Membr. Sci.461(Supplement C): 69-80.
  22. Mühlebach, A., B. Müller, C. Pharisa, M. Hofmann, B. Seiferling and D. Guerry (1997). New water-soluble photo crosslinkable polymers based on modified poly(vinyl alcohol). J. Polym. Sci., Part A: Polym. Chem.35(16): 3603-3611.
  23. Peppas, N. A. (1988). Hydrogels in medicine and pharmacy, CRC press Boca Raton, FL.
  24. Pieróg, M., M. Gierszewska-Drużyńska and J. Ostrowska-Czubenko (2009). Effect of ionic crosslinking agents on swelling behavior of chitosan hydrogel membranes. Prog. Chem. Appl. Chitin Derivatives75: 82.
  25. Qunhui, G., H. Ohya and Y. Negishi (1995). Investigation of the permselectivity of chitosan membrane used in pervaporation separation II. Influences of temperature and membrane thickness. J. Membr. Sci.98(3): 223-232.
  26. Rahimpour, A. and S. S. Madaeni (2007). Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. J. Membr. Sci.305(1–2): 299-312.
  27. Razmjou, A., J. Mansouri and V. Chen (2011). The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Membr. Sci.378(1–2): 73-84.
  28. Schlogl, R. (1953). Ion mobility in exchangers. J. Electrochem.57(3): 195-201.
  29. Sridhar, S., T. Srinivasan, U. Virendra and A. A. Khan (2003). Pervaporation of ketazine aqueous layer in production of hydrazine hydrate by peroxide process. Chem. Eng. J.94(1): 51-56.
  30. Sun, F., C. Wu, Y. Wu and T. Xu (2014). Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis. J. Membr. Sci.450: 103-110.
  31. Tsuru, T., S.-i. Nakao and S. Kimura (1991). Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. J. Chem. Eng. Jpn.24(4): 511-517.
  32. Vauclair, C., H. Tarjus and P. Schaetzel (1997). Permselective properties of PVA-PAA blended membrane used for dehydration of fusel oil by pervaporation. J. Membr. Sci.125(2): 293-301.
  33. Villaluenga, J. P. G., M. Khayet, P. Godino, B. Seoane and J. I. Mengual (2005). Analysis of the membrane thickness effect on the pervaporation separation of methanol/methyl tertiary butyl ether mixtures. Sep. Purif. Technol.47(1): 80-87.
  34. Wardani,A. K., A. N. Hakim, Khoiruddin, W. Destifen, A. Goenawan and I. G. Wenten (2017). Study on the influence of applied voltage and feed concentration on the performance of electrodeionization in nickel recovery from electroplating wastewater, AIP Conf.Proceed. 1805(1):030004(1-7).
  35. Wardani, A. K., A. N. Hakim, Khoiruddin and I. G. Wenten (2017). Combined ultrafiltration-electrodeionizationtechnique for production of high purity water. Water Science and Technology75(12): 2891-2899.
  36. Wu, C., J. Gu, Y. Wu, J. Luo, T. Xu and Y. Zhang (2012). Carboxylic acid type PVA-based hybrid membranes for alkali recovery using diffusion dialysis. Sep. Purif. Technol.92: 21-29.
  37. Wu, G. M., S. J. Lin and C. C. Yang (2006). Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J. Membr. Sci.275(1): 127-133.
  38. Yeom, C.-K. and K.-H. Lee (1996). Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. J. Membr. Sci.109(2): 257-265.


Article Metrics

Abstract views : 1119 | views : 1767


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.