Investigation of Solute Diffusion through Polyvinyl Alcohol/ Polyallylamine Ultrafiltration Membrane

https://doi.org/10.22146/ajche.49538

D Ariono(1), A K Wardani(2), P T P Aryanti(3), I G Wenten(4*)

(1) Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia 40132
(2) Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia 40132
(3) Department of Chemical Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jendral Sudirman, Cimahi, Indonesia 40285
(4) Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia 40132; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


Ultrafiltration membrane has been widely used for several applications due to their high separation capacity, high selectivity, and low operating pressure. In this work, solutes diffusion through polyvinyl alcohol/polyallylamine ultrafiltration membrane was investigated. The membrane was prepared by phase inversion method with glutaraldehyde as crosslinking agent. Meanwhile, NaCl and CaCl2 were used as solutes, either as a single or double solute. The results showed that the increase of polyallylamine concentration led to the increase of membrane swelling degree. For both single and double solutes, diffusion of Na+ and Ca2+ were slightly decreased with the increase of swelling degree. However in double solute diffusion, there was interaction between Na+, Ca2+, and membrane that made Na+ ions moved faster and Ca2+ ions moved slower compared to single solute diffusion. In addition, the increase of solute concentration led to the increase of Na+ diffusion coefficient and the decrease of Ca2+ diffusion coefficient.

Keywords


polyallylamine, polyvinyl alcohol, swelling degree, solute diffusion, ultrafiltration membrane

Full Text:

PDF


References

  1. Aptel,  P.,  J.  Cuny,  J.  Jozefonvicz,  G. Morel  and  J.  Neel  (1974).  Liquid transport    through    membranes prepared  by  grafting  of  polar monomers onto poly(tetrafluoroethylene) films. II. Some factors determining pervaporation rate and selectivity. J. Appl. Polym. Sci.18(2): 351-364.
  2. Ariono, D., P. T. P. Aryanti, S. Subagjo and I. G. Wenten (2017). The effect of polymer concentration on flux stability of  polysulfone  membrane,  AIP  Conf. Proceed. 788(1):030048(1-10).
  3. Aryanti, P. T. P., Khoiruddin and I. G. Wenten (2013). Influence of Additives on  Polysulfone-Based  Ultrafiltration Membrane  Performance  during  Peat Water Filtration. J. Water Sustain.3(2): 85-96.
  4. Aryanti, P. T. P., R. Yustiana, R. E. D. Purnama  and  I.  G.  Wenten  (2015). Performance  andcharacterization  of  PEG400  modified  PVC  ultrafiltration membrane. Membr. Water Treat.6(5): 379-392.
  5. Asatekin, A., S. Kang, M. Elimelech and A.  M.  Mayes  (2007).  Anti-fouling ultrafiltration  membranes  containing polyacrylonitrile-graft-poly(ethylene oxide)comb  copolymer  additives. J. Membr. Sci.298(1–2): 136-146.
  6. Dejeu,  J.,  B.  Lakard,  P.  Fievet  and  S. Lakard  (2009).  Characterization  of charge properties of an ultrafiltration membrane modified by surface grafting of  poly(allylamine)  hydrochloride. J. Colloid Interface Sci.333(1): 335-340.
  7. Du, J. R., S. Peldszus, P. M. Huck and X. Feng   (2009).   Modification   of poly(vinylidene  fluoride)  ultrafiltration membranes with poly(vinyl alcohol) for fouling  control  in  drinking  water treatment. Water  Res.43(18):  4559-4568.
  8. Geens, J., B. Van der Bruggen and C. Vandecasteele (2004). Characterisation of  the  solvent  stability  of  polymeric nanofiltration    membranes    by measurement  of  contact  angles  and swelling. Chem. Eng. Sci.59(5): 1161-1164.
  9. Hamerli, P., T. Weigel, T. Groth and D. Paul (2003). Surface properties of and cell adhesion onto allylamine-plasma-coated      polyethylenterephtalat membranes. Biomaterials24(22): 3989-3999.
  10. Hamid, N. A. A., A. F. Ismail, T. Matsuura, A. W. Zularisam, W. J. Lau, E. Yuliwati and   M.   S.   Abdullah   (2011). Morphological    and    separation performance      study      of polysulfone/titanium       dioxide (PSF/TiO2)  ultrafiltration  membranes for  humic  acid  removal. Desalination273(1): 85-92.
  11. Harsch, A., J. Calderon, R. B. Timmons and G. W. Gross (2000). Pulsed plasma deposition   of   allylamine   on polysiloxane:  a  stable  surface  for neuronal  cell  adhesion. J.  Neurosci. Methods98(2): 135-144.
  12. Himma, N. F., S. Anisah, N. Prasetya and I.  G.  Wenten  (2016).  Advances  in preparation,    modification,    and application    of    polypropylene membrane. J. Polym. Eng.36(4): 329-362.
  13. Hwang,  S.-T.  and  K.  Kammermeyer (1974).  Effect  of  Thickness   on Permeability.  Permeability  of  Plastic Films and Coatings: To Gases, Vapors, and Liquids. H. B. Hopfenberg. Boston, MA, Springer US:197-205.
  14. Izák, P.,  Š.  Hovorka,  T.  Bartovský,  L. Bartovská  and  J.  G.  Crespo  (2007). Swelling  of  polymeric  membranes  in room  temperature  ionic  liquids. J. Membr. Sci.296(1–2): 131-138.
  15. Jose, J., F. Shehzad and M. A. Al-Harthi (2014).  Preparation  method  and physical,    mechanical,    thermal characterization    of    poly(vinyl alcohol)/poly(acrylic   acid)   blends. Polym. Bull.71(11): 2787-2802.
  16. Josh, V., M. Y. Haik, A. I. Ayesh, M. A. Mohsin  and  Y.  Haik  (2013).  Electrical properties of sorbitol-doped poly(vinyl alcohol)–poly(acrylamide-co-acrylic acid)  polymer  membranes. J.  Appl. Polym. Sci.128(6): 3861-3869.
  17. Kanti,  P.,  K.  Srigowri,  J.  Madhuri,  B. Smitha   and   S.   Sridhar   (2004). Dehydration of ethanol through blend membranes  of  chitosan  and  sodium alginate  by  pervaporation. Sep.  Purif. Technol.40(3): 259-266.
  18. Khoiruddin, D. Ariono, Subagjo and I. G. Wenten (2017). Surface modification of ion-exchange  membranes:  Methods, characteristics,  and  performance. J. Appl. Polym. Sci.: 45540(1-13).
  19. Khoiruddin,  I.  N.  Widiasa  and  I.  G. Wenten (2014). Removal of inorganic contaminants in sugar refining process using electrodeionization. J. Food Eng.133: 40-45.
  20. Kim, D. S., H. B. Park, J. W. Rhim and Y. M. Lee (2005). Proton conductivity and methanol transport behavior of cross-linked    PVA/PAA/silica    hybrid membranes. Solid  State  Ionics176(1): 117-126.
  21. Moghimifar,  V.,  A.  Raisi and  A. Aroujalian (2014). Surface modification of   polyethersulfone   ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J. Membr. Sci.461(Supplement C): 69-80.
  22. Mühlebach, A., B. Müller, C. Pharisa, M. Hofmann, B. Seiferling and D. Guerry (1997).  New  water-soluble  photo crosslinkable  polymers  based  on modified poly(vinyl alcohol). J. Polym. Sci., Part A: Polym. Chem.35(16): 3603-3611.
  23. Peppas,  N.  A.  (1988). Hydrogels  in medicine  and  pharmacy,  CRC  press Boca Raton, FL.
  24. Pieróg, M., M. Gierszewska-Drużyńska and  J.  Ostrowska-Czubenko  (2009). Effect of ionic crosslinking agents on swelling behavior of chitosan hydrogel membranes. Prog. Chem. Appl. Chitin Derivatives75: 82.
  25. Qunhui,  G.,  H.  Ohya  and  Y.  Negishi (1995).   Investigation   of   the permselectivity of chitosan membrane used  in  pervaporation  separation  II. Influences   of   temperature   and membrane  thickness. J.  Membr.  Sci.98(3): 223-232.
  26. Rahimpour, A. and S. S. Madaeni (2007). Polyethersulfone     (PES)/cellulose acetate   phthalate   (CAP)   blend ultrafiltration membranes: Preparation, morphology,    performance    and antifouling  properties. J.  Membr.  Sci.305(1–2): 299-312.
  27. Razmjou, A., J. Mansouri and V. Chen (2011). The effects of mechanical and chemical   modification   of   TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES  ultrafiltration  membranes. J. Membr. Sci.378(1–2): 73-84.
  28. Schlogl,  R.  (1953).  Ion  mobility  in exchangers. J. Electrochem.57(3): 195-201.
  29. Sridhar, S., T. Srinivasan, U. Virendra and A.  A.  Khan  (2003).  Pervaporation  of ketazine aqueous layer in production of hydrazine hydrate by peroxide process. Chem. Eng. J.94(1): 51-56.
  30. Sun, F., C. Wu, Y. Wu and T. Xu (2014). Porous   BPPO-based   membranes modified by multisilicon copolymer for application  in  diffusion  dialysis. J. Membr. Sci.450: 103-110.
  31. Tsuru,  T.,  S.-i.  Nakao  and  S.  Kimura (1991). Calculation of ion rejection by extended Nernst–Planck equation with charged  reverse  osmosis  membranes for  single  and  mixed  electrolyte solutions. J. Chem. Eng. Jpn.24(4): 511-517. 
  32. Vauclair, C., H. Tarjus and P. Schaetzel (1997).  Permselective  properties  of PVA-PAA blended membrane used for dehydration   of   fusel   oil   by pervaporation. J.  Membr.  Sci.125(2): 293-301.
  33. Villaluenga,  J.  P.  G.,  M.  Khayet,  P. Godino, B. Seoane and J. I. Mengual (2005).  Analysis  of  the  membrane thickness effect on the pervaporation separation of methanol/methyl tertiary butyl ether mixtures. Sep. Purif. Technol.47(1): 80-87.
  34. Wardani,A. K., A. N. Hakim, Khoiruddin, W.  Destifen,  A.  Goenawan  and  I.  G. Wenten (2017). Study on the influence of   applied   voltage   and   feed concentration on the performance of electrodeionization  in  nickel  recovery from  electroplating  wastewater,  AIP Conf.Proceed. 1805(1):030004(1-7).
  35. Wardani, A. K., A. N. Hakim, Khoiruddin and  I.  G.  Wenten  (2017).  Combined ultrafiltration-electrodeionizationtechnique for production of high purity water. Water  Science  and  Technology75(12): 2891-2899.
  36. Wu, C., J. Gu, Y. Wu, J. Luo, T. Xu and Y. Zhang (2012). Carboxylic acid type PVA-based  hybrid  membranes  for  alkali recovery  using  diffusion  dialysis. Sep. Purif. Technol.92: 21-29.
  37. Wu, G. M., S. J. Lin and C. C. Yang (2006). Preparation  and  characterization  of PVA/PAA membranes for solid polymer electrolytes. J. Membr. Sci.275(1): 127-133.
  38. Yeom,  C.-K.  and  K.-H.  Lee  (1996). Pervaporation  separation  of  water-acetic acid mixtures through poly(vinyl alcohol)  membranes  crosslinked  with glutaraldehyde. J.  Membr.  Sci.109(2): 257-265.



DOI: https://doi.org/10.22146/ajche.49538

Article Metrics

Abstract views : 68 | views : 59

Refbacks

  • There are currently no refbacks.