Microwave Assisted Glycerolysis Of Neem Oil

https://doi.org/10.22146/ajche.49543

Isabela Celina del Mundo(1*), John Michael Cavarlez(2), Anna Monica Pe(3), Susan Roces(4)

(1) Chemical Engineering Department, De La Salle University Manila, 2401 Taft Avenue, Manila Philippines 1004
(2) Chemical Engineering Department, De La Salle University Manila, 2401 Taft Avenue, Manila Philippines 1004
(3) Chemical Engineering Department, De La Salle University Manila, 2401 Taft Avenue, Manila Philippines 1004
(4) Chemical Engineering Department, De La Salle University Manila, 2401 Taft Avenue, Manila Philippines 1004
(*) Corresponding Author

Abstract


Biodiesel is considered as a viable alternative to diesel fuels since it is renewable and eco-friendly. Edible oils account for majority of feedstock oils used in biodiesel production since their free fatty acids (FFA) levels are below 1%. However, these oils are expensive and compete with food demand. Low cost feedstock oils may be used but they must undergo a pre-treatment process (glycerolysis) to reduce their FFA content to less than 1%. Conventional glycerolysis requires long reaction times so microwave irradiation is used to speed up the process. Neem oil with an initial %FFA of 1.138% was used to determine the effect of microwave irradiation on different factors that would affect the FFA reduction. The following factors are investigated: reaction time (5 and 9 minutes), reaction temperature (100°C and 120°C), oil to glycerol molar ratio (1:1 and 1:2) and sulfuric acid catalyst concentration or loading (2% and 4.5%). This study reports that reaction temperature was the only significant factor on FFA reduction. A higher temperature resulted in a higher FFA reduction. The optimum factors achieved are: oil to glycerol molar ratio of 1:1, a catalyst loading of 2%, a time of 5.58 minutes and a reaction temperature of 120°C resulting in a 91.81% FFA reduction

Keywords


Microwave-irradiation, esterification, glycerolysis, neem oil

Full Text:

PDF


References

  1. Anderson, E., Addy, M., Xie, Q., Ma, H., Liu,  Y.,  Cheng,  Y., ...Ruan,  R.  (2016). Bioresource   Technology   Glycerin esterification of scum derived free fatty acids   for   biodiesel   production. Bioresource Technology, 200, 153–160.
  2. Anya, A. (2013). Effect of Free Fatty Acid Content  on  the  Yield  of  Biodiesel Derived from Neem Oil. Journal of Basic and Applied Chemistry, 3(1), 1-4.
  3. Banani,  R.,  Youssef,  S.,  Bezzarga,  M., &Abderrabba, M. (2015). Waste frying oil with high levels of free fatty acids as one  of  the  prominent  sources  of biodiesel  production.  Journal   of Materials  and  Environmental  Science, 6(4), 1178–1185.
  4. Felizardo, P., Machado, J., Vergueiro, D., Correia, M. J., Gomes, J. P., &Bordado, J. M.  (2011).  Study  on  the  glycerolysis reaction of high free fatty acid oils for use  as  biodiesel  feedstock.  Fuel Processing  Technology,  92(6),  1225-1229.
  5. Freedman,  B  et  al.  (1984).Variables affecting the yields of fatty esters from transesterified vegetable oils. J of the Am. Oil Chem. Soc.,61(10), 1638-1643.
  6. Gole,  V.  and  Gogate,  P.  (2014). Intensification of glycerolysis reaction of  higher  free  fatty  acid  containing sustainable feedstock using microwave irradiation. Fuel Proc. Tech. 118, 110-116
  7. Kumar,   R.   (2011).   Bioresource Technology Microwave assisted alkali-catalyzed    transesterification    of Pongamiapinnata seed oil for biodiesel production.  Bioresource  Technology, 102(11), 6617-6620.
  8. Lidstrom,  P.,  Tierney,  J.,  Wathey,  B., Westman, J., 2001. Microwave assisted organic synthesis-a review. Tetrahedron 57, 9225–9283
  9. Mahajan,S., Konar, S. K., & Boocock, D. G. (2006). Determining the acid number of biodiesel. Journal of the American Oil Chemists   Society,83(6),   567-570. doi:10.1007/s11746-006-1241-8
  10. Mazubert, A et al. (2014). Bioresource Technology  Key  role  of temperature monitoring   in   interpretation   of microwave effect on transesterification and   esterification   reactions   for biodiesel   production.   Bioresource Technology,  161,  270-279.  Retrieved March 29, 2016.
  11. Patil, P. D., Gude, V. G., Camacho, L. M., & Deng, S.(2010). Microwave-Assisted Catalytic    Transesterification    of Camelina  Sativa  Oil.  Energy  & Fuels,24(2), 1298-1304.
  12. Patil, P. D., Gude, V. G., Reddy, H. K.,  Muppaneni,  T.,  &  Deng,  S.  (2012). Biodiesel  Production  from  Waste Cooking  Oil  Using  Sulfuric  Acid and Microwave  Irradiation  Processes.  J  of Env. Prot.,03(01), 107-113.
  13. R. Sims, M. Taylor, J. Saddler, W. Mabee, From  1st  to  2nd  gen  biofuel  tech. OECD/IEA Report (2008)
  14. Sanford, S., White, J., & Shah, P. (2009). Feedstock and biodiesel characteristics report. Renewable Energy ..., 1–136.
  15. Wang,  Y.  (2012).  Solid  super  acid catalyzed glycerol esterification of free fatty  acids  in  waste  cooking  oil  for biodiesel production. European Journal of Lipid Science and Technology, 315-324.



DOI: https://doi.org/10.22146/ajche.49543

Article Metrics

Abstract views : 24 | views : 43

Refbacks

  • There are currently no refbacks.