Biodiesel Production From Calophyllum Inophyllum Using Base Lewis Catalyst

https://doi.org/10.22146/ajche.49547

Lailatul Qadariyah(1*), Donny Satria Bhuana(2), Raka Selaksa(3), Ja'far As Shodiq(4), Mahfud Mahfud(5)

(1) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(3) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(4) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(5) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


The search for renewable alternative energy must be developed, one of which is biodiesel. Seed Calophyllum inophyllum has a fairly high oil content of about 71.4% by weight, has great potential when used as raw material for making biodiesel. The purpose of this research was to synthesize biodiesel from Calophyllum inophyllum oil through the transesterification process using base lewis catalyst with microwave assisted, comparing the performance of sodium acetate to potassium hydroxide, knowing the amount of catalyst required to obtain the best biodiesel, and knowing the optimum power in the manufacture of biodiesel, The first step of making Calophyllum inophyllum biodiesel is degumming process, then continued with esterification. The next process is transesterification, followed by purification of biodiesel. The catalysts used are CH3COONa, and KOH. From the results, Calophyllum inophyllum oil can be used as biodiesel feedstock, the best operating conditions for base catalyst at 300 W power, 1% (w/w) concentration, produced the best yield is 96% (for KOH catalyst) and 87% (for CH3COONa catalyst).

Keywords


Biodiesel, Calophyllum inophyllum,Microwave,Base Lewis Catalyst

Full Text:

PDF


References

  1. Abdullah,   Rahmawati   Sianipar,   R.N., Ariyani,     D.,     Nata,     I.F.,     (2017). Conversion   of   palm   oil   sludge   to biodiesel   using   alum   and   KOH   as catalysts.     Sustain.     Environ.     Res. doi:10.1016/j.serj.2017.07.002
  2. Alamsyah, R., Lubis, E.H., Siregar, N.C., Balai,            (2011). Esterifikasi-transesterifikasi      dan      karakterisasi mutu  biodiesel  dari  biji  jarak  pagar  ( 33, 124–130.
  3. Atabani,    A.E.,    (2011).    Calophyllum inophyllum L . as a potential feedstock for bio-diesel production 1–8.
  4. Avhad, M.R., Marchetti, J.M., (2015). A review   onrecent   advancement   in catalytic     materials     for     biodiesel production.   Renew.   Sustain.   Energy Rev.                  50,                  696–718. doi:10.1016/j.rser.2015.05.038
  5. British Petroleum, (2017). BP Statistical Review  of  World  Energy  2017,  British Petroleum. doi:http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf
  6. Comyns,  E.A.E.,  (2007).  Encyclopedic dictionary   of   named   processes   in chemical  technology,  3rd  edn,  Focus on      Catalysts.      doi:10.1016/S1351-4180(07)70686-4
  7. Di  Serio,  M.,  Tesser,  R.,  Dimiccoli,  M., Cammarota,       F.,       Nastasi,       M., Santacesaria,  E.,  (2005).  Synthesis  of biodiesel via homogeneous Lewis acid catalyst.  J.  Mol.  Catal.  A  Chem.  239, 111–115. doi:10.1016/j.molcata.2005.05.041
  8. Kirubakaran, M., Arul Mozhi Selvan, V., (2018).   A   comprehensive   review   of low  cost  biodiesel  production  from waste   chicken   fat.   Renew.   Sustain. Energy        Rev.        82,        390–401. doi:10.1016/j.rser.2017.09.039
  9. Motasemi,   F.,   Ani,   F.N.,   (2012).   A review        on        microwave-assisted production     of     biodiesel.     Renew. Sustain.  Energy  Rev.  16,  4719–4733. doi:10.1016/j.rser.2012.03.069
  10. Muhammad,   Fatih   Ridho,   Safetyllah Jatranti, Lailatul Qadariyah, M., (2014). Pembuatan    Biodiesel    dari    Minyak Nyamplung                    Menggunakan Pemanasan  Gelombang  Mikro.  J.  Tek. Pomits 3, 154–159.
  11. Nugraha,  S.,  (2016).  Energy  Outlook Indonesia.   Kementerian   Energi   dan Sumber Daya Mineral, Jakarta Selatan.
  12. Pan,  Y.,  Alam,  M.A.,  Wang,  Z.,  Wu,  J., Zhang,  Y.,  Yuan,  Z.,  (2016).  Enhanced esterification     of    oleic    acid    and methanol   by   deep   eutectic   solvent assisted    Amberlyst    heterogeneous catalyst. Bioresour. Technol. 220, 543–548. doi:10.1016/j.biortech.2016.08.113
  13. Puspitahati,  Saleh,  E.,  Sutrisno,  Eko, (2011).  Pemisahan  Getah  (Gum)  Pada Minyak          Nyamplung          (Crude Calophyllum    Oil    ) Menggunakan Zeolit  Dan  Karbon  Aktif  Menjadi  Rco (Refine Calophyllum Oil ) 1–15.
  14. Sudradjat,  R.,  Sahirman,  Suryani,  A., Setiawan, D.,                (2010). Transesterification Process in Biodiesel Manufacture         Using         Esterified Nyamplung         Oil         (Calophyllum inophyllumL .) as Raw Material ) 184–198.
  15. Supriya  B.  Chavan,  Yadav,  M.,  Singh, R.,  Singh,V.,  Kumbhar,  R.R.,  Sharma, Y.C.,  (2014).  Production  of  Biodiesel from   Three   Indigenous   Feedstock: Optimization   of   Process   Parameters and    Assessment    of    Various    Fuel Properties. Environ.  Sci.  Technol.  33, 482–489. doi:10.1002/ep
  16. Trombettoni, V., Lanari, D., Prinsen, P., Luque,  R.,  Marrocchi,  A.,  Vaccaro,  L., (2017). Recent advances in sulfonated resin  catalysts  for  efficient  biodiesel and  bio-derived  additives  production. Prog. Energy     Combust.     Sci.     0. doi:10.1016/j.pecs.2017.11.001
  17. Wati,   A.,   Motto,   S.A.,   Satriadi,   H., (2011).      Ekstraksi      Minyak      Dari Mikroalga       Jenis       Chlorella       Sp Berbantukan Ultrasonik 8, 1–7.



DOI: https://doi.org/10.22146/ajche.49547

Article Metrics

Abstract views : 53 | views : 38

Refbacks

  • There are currently no refbacks.