Hybrid Coal: Effects Of Composition And Co-pyrolysis Retention Time in Low Rank Coal and Biomass Waste Co-pyrolysis Process on The Product’s Yield

https://doi.org/10.22146/ajche.49549

Jenny Rizkiana(1), Slamet Handoko(2), Winny Wulandari(3), Muhammad Afif Ridha(4), Hendi Aviano Prasetyo(5), Dwiwahju Sasongko(6*)

(1) Chemical Engineering Departement, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; New and Renewable Energy Research Center, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
(2) Chemical Engineering Departement, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
(3) Chemical Engineering Departement, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; New and Renewable Energy Research Center, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
(4) Chemical Engineering Departement, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
(5) Chemical Engineering Departement, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
(6) Chemical Engineering Departement, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; New and Renewable Energy Research Center, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


Low rank coal upgrading into a more efficient and environmentally friendly fuel can be done through copyrolysis with biomass into a fuel called hybrid coal. The purpose of the research is to determine the effects of biomass composition and copyrolysis retention time to the hybrid coal yields. Copyrolysis process conducted in a vertical tubular fixed bed reactor in an inert condition with atmospheric pressure and temperature set at 300oC. Inert condition achieved by flowing nitrogen gas into the reactor with a flowrate of 1.6 L/minutes. Biomass mixing composition is varied at 20, 30, and 40% from the total weight of the mixture. Copyrolysis retention time varied at 30, 60, and 90 minutes. Hybrid coals are characterized by proximate analysis, ultimate analysis, and calorific value measurement. Increase in retention time of copyrolysis from 30 to 90 minutes causing an increase in calorific value of 12.57-23.80%. From the proximate analysis results, fixed carbon content rise with the increase of co-pyrolysis time. The highest fixed carbon content obtained in the variation of 90 minutes, in the range of 49.36-49.75%. Increasing of sawdust composition from 20 to 40%, lowering the calorific value in the range of 0.58-8.55%.

Keywords


hybrid coal, co–pyrolysis, low rank coal, biomass waste

Full Text:

Untitled PDF


References

  1. Kementerian Energi dan Sumber Daya Mineral (ESDM) Republik Indonesia. Outlook Energi Indonesia. (2014)
  2. Jeong. H.J.; Hwang. J.H.; Seo. D.K.; Park. S.S. Journal of Thermal Analytical Calometry 1867-1875; 120(3)(2015)
  3. Lee. D.W.; Bae. J.S.; Lee.Y.J.; Park. S.R.; Hong. J.C.; Lee. B.H. Environmental Science and Technology 1704-1710; 37 (2013)
  4. Park. D.K.; Kin. S.D.; Lee. S.H.; Lee. J.G. Bioresource Technology 6151-6156; 101 (2010)
  5. Rizkiana. J.; Guan. G.; Widayatno. W.B.; Hao. X.; Huang. W.; Tsutsumi. A.; Abudula. A.Fuel 414-419; 134 (2014)
  6. Sasongko. D.; Wulandari. W.; Rubani. I.S.; Rusydiansyah. R. AIP Conference Proceedings; 1805(1)(2017)
  7. Basu. P.Elsevier. Inc.. Oxford (2013)
  8. Bergman. P.C.A.; Boersma. A.R.; Zwart. R.W.R.; Kiel. J.H.A.. Energy research Centre of the Netherlands ECN-C—05-013 (2005)
  9. Guo. M.; and Bi. J.-C. Fuel Processing Technology 743–749; 138 (2015)
  10. Quan. C.; Xu. S.; An. Y.; Liu. X. Journal of Thermal Analysis and Calorimetry 817–823; 117 (2014)
  11. Sonobe. T.; Worasuwannarak. N.;Pipatmamomai. S. Fuel Process Technology 1371-1378; 89(12) (2008)
  12. Blesa. M. J.; Fierro. V.; Miranda. J. L.; Moliner. R.; Palacios. J. M. Fuel Process Technology 1-17; 74(1) (2001)
  13. Shui. H.; Shan. C.; Cai. Z. Energy 6645-6650; 36(11) (2011)
  14. Rizkiana, J.; Guan, G.; Widayatno, W. B.; Yang, J.; Hao, X.; Matsuoka, K.; Abudula, A. RSC Advances 2096-2105; 6(2016)
  15. Chen. C.; Ma. X.; He. Y. Bioresources Technology 264-273; 117 (2012)
  16. Li. S.; Chen. X.; Liu. Y.J.; Wang. L.; Yu. G. Bioresources Technology 414-420; 179 (2015)
  17. Moghtaderi. B.; Meesri. C.; Wall. T.F.Fuel 745-750; 83(6) (2004)
  18. Aboyade. A. O.; Carrier. M.; Meyer. E. L.; Knoetze. H.; G ̈orgens. J. F. Energy Conversion Management 198-207; 65 (2013).



DOI: https://doi.org/10.22146/ajche.49549

Article Metrics

Abstract views : 2134 | views : 0 | views : 2262

Refbacks

  • There are currently no refbacks.


ugarena777