CO2 Selective Water Gas Shift Membrane Reactor : Modeling and Simulation

Sang Kompiang Wirawan(1*), Derek Creaser(2), I Made Bendiyasa(3), Wahyudi Budi Sediawan(4)

(1) Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, 55281, Yogyakarta, Indonesia
(2) Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
(3) Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, 55281, Yogyakarta, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, 55281, Yogyakarta, Indonesia
(*) Corresponding Author


The concept of a CO2 selective water gas shift (WGS) membrane reactor has been modeled and simulated by a one-dimensional reactor and transport process in the membrane. The model was used to investigate the effect of temperature, total pressure, membrane thickness and area on the reactor performance. A Silicalite-1 membrane was considered to be integrated with the WGS reactor. The mass transport through the membrane was described by surface diffusion. Air was used as sweep gas on the permeate side of the membrane. The catalytic WGS kinetics were for a commercial Cu/ZnO catalyst for the lower-temperature WGS reaction. The WGS membrane reactor was sized to produce H2 sufficient for the production of 10 kW electrical power from a fuel cell. The modeling and simulation results showed that the WGS membrane reactor with a silicalite-1 membrane was capable of decreasing the CO concentration to about 675 ppm which is 70% less than that achievable at equilibrium conversion, but it would come at the cost of unacceptable H2 loss. Based on a minimum target of H2 loss, the optimum outlet CO concentration achieved by the silicalite-1 membrane reactor was about 1310 ppm, under a range of limited conditions. The modeling study showed that both the WGS reaction rate and the CO2/H2 selective permeation played an important role on the overall reactor performance.


CO2 selective membrane, Water Gas Shift, General Maxwell-Stefan, Modeling

Full Text:



1. Algieri, C., Bernardo, P., Golemme, G., Barbieri, G. and Drioli, E. (2003) Permeation properties of a thin silicalite-1 (MFI) membrane. J. Membr. Sci., 222, 181.
2. Bakker, W. J., Broeke, L. J. P. V. D., Kapteijn, F. and Moulijn, J. (1997) Temperature dependence of one-component permeation through a silicalite-1 membrane. AIChE J., 43, 2203.
3. Basile, A., Paturzo, L. and Gallucci, F. (2003) Co-current and counter-current modes for water gas shift membrane reactor. Catal. Today, 82, 275–281.
4. Brunetti, A., Caravella, A., Barbieri, G. and Drioli, E. (2007) Simulation study of water gas shift reaction in a membrane reactor. J. Membrane Sci., 306, 329.
5. Bussai, C., Vasenkov, S., Liu, H., Böhlmann, W., Fritzsche, S., Hannongbua, S., Haberlandt, R. and Kärger, J. (2002) On the diffusion of water in silicalite-1: MD simulations using ab initio fitted potential and PFG NMR measurements,. Appl. Catal. A: Gen., 232, 59.
6. Ciavarella, P., Moueddeb, H., Miachon, S., Fiaty, K. and Dalmon, J.-A. (2000) Experimental study and numerical simulation of hydrogen/isobutane permeation and separation using MFI zeolite membrane reactor. Catal. Today, 56, 253.
7. Dunne, J. A., Mariwala, R., Rao, M., Sircar, S., Gorte, R. J. and Myers, A. L. (1996) Calorimetric Heats of Adsorption and Adsorption Isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on Silicalite. Langmuir, 12, 5888.

8. Fleys, M. and Thompson, R. W. (2005) Monte Carlo Simulations of Water Adsorption Isotherms in Silicalite and Dealuminated Zeolite Y. J. Chem. Theory Comput., 1, 453.
9. Graaf, J. M. V. D., Kapteijn, F. and Moulijn, J. A. (1999) Modeling permeation of binary mixtures through zeolite membranes. AIChE J. , 45, 497.
10. Guo, J., Han, A. J., Yu, H., Dong, J. P., He, H. and Long, Y. C. (2006) Base property of high silica MFI zeolites modified with various alkyl amines. Micropor. Mesopor Mater, 94, 166.
11. Hedlund, J., Sterte, J., Anthonis, M., Bons, A., Cartensen, B., Corcoran, N., Cox, D.,
Deckman, H., Gijnst, W. D., Moor, P., Lai, F., Machenry, J., Mortier, W., Reinoso, J. and
Peters, J. (2002) High-flux MFI membranes. Micropor. Mesopor Mater, 52, 179.
12. Huang, J., El-Azzami, L. and Ho, W. S. W. (2005) Modeling of CO2-selective water gas shift membrane reactor for fuel cell. J. Membrane Sci., 261, 67.
13. Kapteijn, F., Bakker, W. J. W., Graaf, J. V. D., Zheng, G., Poppe, J. and Moulijn, J. A.
(1995) Permeation and separation behavior of a silicalite-1 membrane. Catal. Today, 25, 213.
14. Kärger, J., Pfeifer, H. and Stallmach, F. (1993) 129Xe and 13C PFG n.m.r. study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites, 13, 50.
15. Keiski, R. L., Desponds, O., Chang, Y. F.
and Somorjai, G. A. (1993) Kinetics of the water-gas shift reaction over several alkane activation and water-gas shift catalysts. Appl. Catal. A: Gen., 101, 317.

16. Krishna, R. and Baur, R. (2003) Modelling issues in zeolite based separation processes. Sep. Pur. Technol., 33, 213.

17. Krishna, R. and Wesselingh, J. A. (1997) The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci., 52, 861.

18. Lindmark, J., Hedlund, J., K.Wirawan, S. and Creaser, D. (2010) Impregnated Silicalite-1 Membranes for Enhanced selectivity. J. Membr. Sci., 365 (1-2), 188-197
19. Miachon, S., Ciavarella, P., Dyk, L. V., Kumakiri, I., Fiaty, K., Schuurman, Y. and Dalmon, J.-A. (2007) Nanocomposite MFI-alumina membranes via pore-plugging synthesis: Specific transport and separation properties. J. Membr. Sci., 298, 71.
20. Nagumo, R., Takaba, H., Suzuki, S. and Nakao, S. (2001) Estimation of inorganic gas permeability through an MFI-type silicalite membrane by a molecular simulation technique combined with permeation theory. Micropor. Mesopor Mater, 48, 247.
21. Papadopoulos, G. K., Jobic, H. and Theodorou, D. N. (2004) Transport Diffusivity of N2 and CO2 in Silicalite:  Coherent Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations. J. Phys. Chem. B, 108, 12748.

22. Salmi, T. and Hakkarainen, R. (1989) Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu-ZnO Catalyst. Appl. Catal., 49 285.
23. Skoulidas, A. I. and Sholl, D. S. (2002) Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in Silicalite from Atomistic Simulations. J. Phys. Chem. B, 106, 5061.
24. Wirawan, S. K. and Creaser, D. (2006a) CO2 adsorption on silicalite-1 and cation exchanged ZSM-5 zeolites using a step change response method. Micropor. Mesopor Mater, 91, 196.
25. Wirawan, S. K. and Creaser, D. (2006b) Multicomponent H2/CO/CO2 adsorption on BaZSM-5 zeolite. Sep. Pur. Technol., 52, 224.
26. Wirawan, S. K., Creaser, D., Lindmark, J., Hedlund, J., Bendiyasa, I. M. and Sediawan, W. B. (2011) H2/CO2 Permeation through a Silicalite-1 Composite Membrane, J. Membr. Sci. 375 (1-2), 313-322
27. Zalc, J. M. and Löffler, D. G. (2002) Fuel processing for PEM fuel cells: transport and kinetic issues of system design. J. Power Sources, 111, 58.


Article Metrics

Abstract views : 1864 | views : 1639


  • There are currently no refbacks.

ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.