Artificial Neural Network (ANN) Analysis of Co-pyrolysis of Waste Coconut Husk and Laminated Plastic Packaging

https://doi.org/10.22146/ajche.69521

Joselito Abierta Olalo(1*)

(1) Department of Mechanical Engineering, College of Engineering, Camarines Norte State Col-lege, Daet, Camarines Norte, 4600, Philippines
(*) Corresponding Author

Abstract


Co-pyrolysis of plastic with biomass was used in the possible mitigation of environmental health problems associated with plastic waste. The pyrolysis method possessed the highest solution in the reduction of waste problems. Fuel oil can be produced through the pyrolysis of plastic and biomass waste. Many researchers used pyrolysis technology to produce a suitable amount of pyrolytic oil through different optimization techniques. This study will predict the percentage mass oil yield using an artificial neural network. It uses an input layer, hidden layer and an output layer. Three input factors for the input layer were (i) temperature, (ii) particle size, and (iii) percentage coconut husk. The structure has one hidden layer with two neurons. The artificial neural network was designed to predict the percentage oil yield after 15 pyrolysis runs set by the Box-Behnken design of the experiment. Percentage oil yields after pyrolysis were calculated. Results showed that temperature and percentage of coconut husk significantly influenced the percentage oil yield. Predicted values from simulation in the artificial neural network showed a good agreement through a correlation coefficient of 99.5%. The actual percentage oil yield overlaps the predicted values, which ANN demonstrates as a viable solution.


Keywords


Artificial neural network; Co-pyrolysis; Coconut husk; Laminated plastic

Full Text:

PDF


References

  1. Association of Plastic Manufacturers Europe (APME) (2015). An analysis of European plastics production, demand and waste data. Belgium: European Association of Plastics Recycling and Recovery Organisations, p. 1–32.
  2. Caroko, N., Saptoadi, H., & Rohmat, T.A. (2020). Heating Characteristics of Palm Oil Industry Solid Waste and Plastic Waste Mixture using a Microwave. ASEAN J.Chem.Eng., 20 (2), 174-183.
  3. Co, R.A.S., & Paringit, E.C. (2021). The Regional Assessment on the Solid Waste-to-Energy Potential in the Island of Luzon, Republic of the Philippines. Chemical Engineering Transactions, 83, 457-462.
  4. Costa, P., Pinto, F., Mata, R., Marques, P., Paradela, F., & Costa, L. (2021). Validation of the Application of the Pyrolysis Process for the Treatment and Transformation of Municipal Plastic Wastes. Chemical Engineering Transactions, 86, 859-864.
  5. Galang, M.G.K., & Ballesteros, Jr. F. (2018). Estimation of waste mobile phones in the Philippines using neural networks. Global NEST Journal, Vol 20, No 4, pp 767-772.
  6. Gupta, A.K., Guntuku, S.C., Desu, R.K., & Balu, A. (2015). Optimization of turning parameters by integrating genetic algorithm with support vector regression and artificial neural networks. Int J Adv Manuf Technol 77(1–4):331–9.
  7. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., ... & Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.
  8. Karsoliya S. (2012). Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int J Eng Trends Technol 3(6):713–7.
  9. Kılıc, M.¸ Pütün, E., & Pütün, A.E. (2014). Optimization of Eu phorbia ri gida. fast pyrolysis conditions by using response surface methodology. J. Anal. Appl. Pyrolysis 110: 163-171.
  10. Mia, M., & Dhar, N.R. (2016). Response surface and neural network based predictive models of cutting temperature in hard turning. Journal of Advanced Research, 7(6), 1035-1044.
  11. Olalo, J. (2021). Characterization of Pyrolytic Oil Produced from Waste Plastic in Quezon City, Philippines Using Non-catalytic Pyrolysis Method. Chemical Engineering Transactions, 86, 1495-1500.
  12. Olalo, J. (2022). Pyrolytic Oil Yield from Waste Plastic in Quezon City, Philippines: Optimization Using Response Surface Methodology. International Journal of Renewable Energy Development, 11(1), 325-332.
  13. Saffarzadeh, A., Shimaoka, T., Motomura, Y., & Watanabe, K. (2006). Chemical and mineralogical evaluation of slag products derived from the pyrolysis/melting treatment of MSW. Waste Manage, 26, 1443–1452.
  14. Shihani, N., Kumbhar, B.K., & Kulshreshtha, M. (2006). Modeling of extrusion process using response surface methodology and artificial neural networks. J. Eng. Sci. Technol. 1 31–40.
  15. Sohl, J.E., & Venkatachalam, A.R. (1995). A neural network approach to forecasting model selection. Information and Management, 29(6), 297-303.
  16. UNEP (2016). Marine plastic debris and microplastics – Global lessons and research to inspire action and guide policy change. United Nations Environment Programme, Nairobi.



DOI: https://doi.org/10.22146/ajche.69521

Article Metrics

Abstract views : 5846 | views : 2555

Refbacks

  • There are currently no refbacks.


slot mpo

slot777

Slot Mahjong 1

AGEN101

slot gacor

slot

slot gacor

slot

harum777

https://www.husavikgreenhostel.is/terms-conditions

situs toto

mpo slot

vadicasino

slot

sotong 88

slot88

SBCTOTO

slot777

naked link

slot gacor

Situs Gacor

Situs Slot777 Gacor

Kilau4D

Pusat4D

Pusat4D

Calon4D

Calon4D

Situs Depo 5K

Situs Deposit Qris 5000

Situs Deposit Qris 5000

 

toto slot 5k

situs

situs toto 5k

slot gacor 5k

slot qris

slot gacor

top4d

https://restoranpagisore.com/

slot gacor

kingliga

https://www.bjartlif.is/undirbladsidur

togel 4d online

slot88

mayong77

mayong77

mayong77

mayong77

slot togel

slot gacor gampang menang

slot

https://cropgeneticsinnovation.org/

toto

bonus new member 100

slot gacor

sbobet88

bandar slot gacor

indobolaku

slot

IDX66

toto slot

SLOT TOTO

Situs slot gacor

slot gacor

slot gacor

https://www.grandpalacebali.com/contact-us/

CIHUY88

toto macau

sbobet88

spin68

AMANAHTOTO

ino777

situs slot gacor

slot gacor

slot gacor

toto slot

malukutoto

Slot Dana

rtp slot

slot

toto slot

slot toto

slot 4d

situs toto slot

AMANAHTOTO

idn play

slot gacor

Slot Gacor

slot deposit 1k

togel online

slot 5k

slot

rezekitoto

rezekitoto

dasi4d

https://elisacreix.es/

toto slot

hokijp168

Dultogel

Tokped777

bwo99

mega38

situs slot

situs slot

slot gampang gacor

slot gacor

slot777

yuantoto

bandar togel

slot Gacor

situs slot gacor

slot mahjong

LINK GACOR

zeus slot

https://www.homegrownbrewhouse.com/about

Situs slot

bpjs138

LINK GACOR

slot gacor

raja slot

slot gacor

slot pulsa

Apk Rejekibet adalah aplikasi resmi berbagai game online yang berkembang pesat saat ini dan banyak digunakan untuk download berbagai jenis slot online favorit.

slot777

midaszeus

oriental66

oriental66

ino777

slot

slot

slot