Antioxidant and Antiaging Potential of Salak Fruit Extract (Salacca zalacca (Gaert.)Voss)
Wahyu Widowati(1*), Dani Dani(2), Vera Vera(3), Viranda Andria Yuninda(4)
(1) Faculty of Medicine Maranatha Christian University, Bandung, West Java
(2) Faculty of Medicine Maranatha Christian University, Bandung, West Java
(3) Faculty of Medicine Maranatha Christian University, Bandung, West Java
(4) Research Center Aretha Medika Utama, Bandung, West Java
(*) Corresponding Author
Abstract
Natural skin aging is indicated by a loss of skin structure and integrity caused by external factors including UV exposure. This exposure causes oxidative stress on skin cells, initiates aging, and degradation of extracellular matrix (ECM) structure which is composed of many proteins, including collagen and elastin. ECM degradation is caused by the increased activity of proteolytic enzymes, one of which is elastase (closely related to wrinkling). To inhibit oxidative stress during the photoaging process, the skin needs antioxidant compounds. Salak (Salacca zalacca (Gaert.)Voss) is a fruit that is rich in antioxidants because it contains flavonoid, phenolic, and polyphenolic compounds, including chlorogenic acid. The purpose of this study is to demonstrate the antioxidant activity and antiaging properties of salak fruit extract (SFE) as a candidate for active ingredients in the prevention of aging. To determine the antioxidant activity of SFE, 2,2-diphenyl-1-picrylhydrazil (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays were performed, while elastase assays were performed to determine the anti-aging properties of SFE. The IC50 values for DPPH scavenging and FRAP activity of SFE were 107.52 μg/mL and 16.82 μg/mL with the highest activity at 68.79% and 97.96%, at concentrations of 200 and 50 μg/mL, respectively. Meanwhile, the anti-aging properties determined through the elastase assay showed an IC50 value of 19.71 μg/mL with the highest inhibition 72.50% at a concentration of 66.67 μg/mL. SFE has the potential as an active ingredient in preventing aging through its antioxidant activity and anti-aging properties.
Keywords
Full Text:
PDFReferences
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4). https://doi.org/10.3390/plants6040042
Bjørklund, G., Shanaida, M., Lysiuk, R., Butnariu, M., Peana, M., Sarac, I., Strus, O., Smetanina, K., & Chirumbolo, S. (2022). Natural compounds and products from an anti-aging perspective. Molecules, 27(20), 7084.
Čepková, P. H., Jágr, M., Janovská, D., Dvořáček, V., Kozak, A. K., & Viehmannová, I. (2021). Comprehensive mass spectrometric analysis of snake fruit: Salak (salacca zalacca). Journal of Food Quality, 2021. https://doi.org/10.1155/2021/6621811
de Jager, T. L., Cockrell, A. E., & Du Plessis, S. S. (2017). Ultraviolet light induced generation of reactive oxygen species. Advances in Experimental Medicine and Biology, 996, 15–23. https://doi.org/10.1007/978-3-319-56017-5_2
Deniz, F. S. S., Salmas, R. E., Emerce, E., Cankaya, I. I. T., Yusufoglu, H. S., & Orhan, I. E. (2020). Evaluation of collagenase, elastase and tyrosinase inhibitory activities of Cotinus coggygria Scop. through in vitro and in silico approaches. South African Journal of Botany, 132, 277–288. https://doi.org/10.1016/j.sajb.2020.05.017
Garg, C., Khurana, P., & Garg, M. (2017). Molecular mechanisms of skin photoaging and plant inhibitors. International Journal of Green Pharmacy, 11(2), S217–S232.
Gems, D. (2014). What is an anti-aging treatment? Experimental Gerontology, 58, 14–18. https://doi.org/10.1016/j.exger.2014.07.003
Ginting, C. N., Lister, I. N. E., Girsang, E., Riastawati, D., Kusuma, H. S. W., & Widowati, W. (2020). Antioxidant Activities of Ficus elastica Leaves Ethanol Extract and Its Compounds. Molecular and Cellular Biomedical Sciences, 4(1), 27. https://doi.org/10.21705/mcbs.v4i1.86
Girsang, E., Ginting, C. N., Lister, I. N. E., Gunawan, K. yashfa, & Widowati, W. (2021). Anti-inflammatory and antiaging properties of chlorogenic acid on UV-induced fibroblast cell. PeerJ, 7, 1–15. https://doi.org/10.7717/peerj.11419
Girsang, E., Lister, I. N. E., Ginting, C. N., Khu, A., Samin, B., Widowati, W., Wibowo, S., & Rizal, R. (2019). Chemical Constituents of Snake Fruit (Salacca zalacca (Gaert.) Voss) Peel and in silico Anti-aging Analysis. Molecular and Cellular Biomedical Sciences, 3(2), 122. https://doi.org/10.21705/mcbs.v3i2.80
GS, C., V, K., S, G., A, K., N, G., & L, K. (2018). Phytochemical and Pharmacological Aspects of Clitoria Ternatea- a Review. Journal of Applied Pharmaceutical Sciences and Research, 1(2), 3–9. https://doi.org/10.31069/japsr.v1i2.13061
Gupta, S., Finelli, R., Agarwal, A., & Henkel, R. (2021). Total antioxidant capacity—Relevance, methods and clinical implications. Andrologia, 53(2), 1–8. https://doi.org/10.1111/and.13624
Imokawa, G., & Ishida, K. (2015). Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: Reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. International Journal of Molecular Sciences, 16(4), 7753–7775. https://doi.org/10.3390/ijms16047753
Lan, C. C. E. (2019). Effects and interactions of increased environmental temperature and UV radiation on photoageing and photocarcinogenesis of the skin. Experimental Dermatology, 28(October 2018), 23–27. https://doi.org/10.1111/exd.13818
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/ijms22073380
Panich, U., Sittithumcharee, G., Rathviboon, N., & Jirawatnotai, S. (2016). Ultraviolet radiation-induced skin aging: The role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells International, 2016. https://doi.org/10.1155/2016/7370642
Rajagopalan, P., Jain, A. P., Nanjappa, V., Patel, K., Mangalaparthi, K. K., Babu, N., Cavusoglu, N., Roy, N., Soeur, J., Breton, L., Pandey, A., Gowda, H., Chatterjee, A., & Misra, N. (2019). Erratum: Proteome-wide changes in primary skin keratinocytes exposed to diesel particulate extract—A role for antioxidants in skin health (Journal of Dermatological Science (2018) 91(3) (239–249), (S0923181118302159), (10.1016/j.jdermsci.2018.05.003)). Journal of Dermatological Science, 96(2), 114–124. https://doi.org/10.1016/j.jdermsci.2019.08.009
Rubio, C. P., Hernández-Ruiz, J., Martinez-Subiela, S., Tvarijonaviciute, A., & Ceron, J. J. (2016). Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Veterinary Research, 12(1), 1–7. https://doi.org/10.1186/s12917-016-0792-7
Rumpf, J., Burger, R., & Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules, 233, 123470.
Rusmana, D., Wahyudianingsih, R., Elisabeth, M., Balqis, Maesaroh, & Widowati, W. (2017). Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. Indonesian Biomedical Journal, 9(2), 84–90. https://doi.org/10.18585/inabj.v9i2.281
Saleh, M. S. M., Siddiqui, M. J., Mediani, A., Ismail, N. H., Ahmed, Q. U., So’ad, S. Z. M., & Saidi-Besbes, S. (2018). Salacca zalacca: A short review of the palm botany, pharmacological uses and phytochemistry. Asian Pacific Journal of Tropical Medicine, 11(12), 645–652. https://doi.org/10.4103/1995-7645.248321
Siregar, N. S., Julianti, E., Silalahi, J., & Sinaga, H. (2022). Antioxidant activity of Salak Sidempuan ( Salacca zalacca) fruit with different solvents using the DPPH method. IOP Conference Series: Earth and Environmental Science, 1115(1). https://doi.org/10.1088/1755-1315/1115/1/012097
Sohn, D. H., Kim, Y. C., Oh, S. H., Park, E. J., Li, X., & Lee, B. H. (2003). Hepatoprotective and free radical scavenging effects of Nelumbo nucifera. Phytomedicine, 10(2–3), 165–169. https://doi.org/10.1078/094471103321659889
Tan, S. S., Tan, S. T., & Tan, C. X. (2020). Antioxidant, hypoglycemic and anti-hypertensive properties of extracts derived from peel, fruit and kernel of Salak. British Food Journal, 122(10), 3029–3038. https://doi.org/10.1108/BFJ-03-2020-0233
Thring, T. S. A., Hili, P., & Naughton, D. P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine, 9, 1–11. https://doi.org/10.1186/1472-6882-9-27
Utami, S., Sachrowardi, Q. R., Damayanti, N. A., Wardhana, A., Syarif, I., Nafik, S., Arrahmani, B. C., Kusuma, H. S. W., & Widowati, W. (2018). Antioxidants, anticollagenase and antielastase potentials of ethanolic extract of ripe sesoot (Garcinia picrorrhiza Miq.) fruit as antiaging. Journal of HerbMed Pharmacology, 7(2), 88–93. https://doi.org/10.15171/jhp.2018.15
Widowati, W., Rani, A. P., Amir Hamzah, R., Arumwardana, S., Afifah, E., Kusuma, H. S. W., Rihibiha, D. D., Nufus, H., & Amalia, A. (2017). Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds. Natural Product Sciences, 23(3), 192–200. https://doi.org/10.20307/nps.2017.23.3.192
Widowati, W., Ratnawati, H., Husin, W., & Maesaroh, M. (2015). Antioxidant properties of spice extracts. Biomedical Engineering, 1(1), 24–29.
Widowati, W., Widya Janeva, B., Nadya, S., Amalia, A., Arumwardana, S., Kusuma, H. S. W., & Arinta, Y. (2018). Antioxidant and antiaging activities of Jasminum sambac extract, and its compounds. Journal of Reports in Pharmaceutical Sciences, 7(3), 270–285.
Yeo, J. D., & Shahidi, F. (2019). Critical Re-Evaluation of DPPH assay: Presence of pigments affects the results [Research-article]. Journal of Agricultural and Food Chemistry, 67(26), 7526–7529. https://doi.org/10.1021/acs.jafc.9b02462
Younis, M. M., Ayoub, I. M., Mostafa, N. M., El Hassab, M. A., Eldehna, W. M., Al-Rashood, S. T., & Eldahshan, O. A. (2022). GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. Plants, 11(7), 1–19. https://doi.org/10.3390/plants11070918
DOI: https://doi.org/10.22146/mot.83995
Article Metrics
Abstract views : 2401 | views : 1722Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Majalah Obat Tradisional
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada