Mauli Banana Stem Gel: A Potential Material for Dentin Remineralization Analyzed Using Fourier Transform Infrared Spectroscopy

https://doi.org/10.22146/mot.90537

Amy Nindia Carabelly(1*), Yajma Kamiila Rahman(2), Dewi Puspitasati(3), Isyana Erlita(4), Erida Wydiamala(5)

(1) Department of Oral Pathology and Maxillofacial, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, South Kalimantan
(2) Dental Faculty Student, Lambung Mangkurat University, Banjarmasin, South Kalimantan
(3) Department of Dental Material, Faculty of Dentistry, Lambung Mangkurat University, South Kalimantan, Banjarmasin
(4) Department of Conservative Dentistry, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, South Kalimantan
(5) Department of Parasitology, Faculty of Medical, Lambung Mangkurat University, Banjarmasin, South Kalimantan
(*) Corresponding Author

Abstract


Dental caries requires remineralizing agents to restore the dentin. Mauli banana stem gel is predicted to be an alternative material for mineral deposition during the remineralization process. Fourier transform infrared spectroscopy (FTIR) can analyze substances that indicate dentin remineralization. This study aimed to conduct an FTIR analysis of Mauli banana stem gel as a potential substitute material for dentin remineralization. The study utilized dentin slices obtained from the first premolars of the maxilla, which were demineralized using EDTA. Subsequently, the dentin slices were treated with CPP-ACP, 50% MBSG, 62,5% MBSG, and artificial saliva. A test tube containing 15 ml of artificial saliva was placed inside the smeared material, which was applied twice a day. It was left for three minutes and then rinsed with deionized water before being incubated at 37 °C. Basting was carried out for 21 days, and FTIR observations were performed. The major absorbance peaks detected were O-H and N-H stretch; C-H stretch; SCN stretch; Amide I; CO32-(v3) and collagen; Amide II; CH2 scissoring; C-H deformation; C-H stretching; Amide III; and PO43-(V3). MBSG demonstrated superior retention of dentin collagen compared to the control group, but it could not maintain the mineral content level on day 21. MBSG demonstrated a decrease in crystallinity due to a rise in carbonate content in the hydroxyapatite lattice. The study's findings indicate that MBSG remains unsuitable for dentin remineralization. Additional additives are necessary to enhance the levels of collagen and minerals in remineralized dentin.


Keywords


Caries; Mauli Banana; Remineralization; Spectroscopy

Full Text:

PDF


References

Abedi, N., Sadat Sajadi-Javan, Z., Kouhi, M., Ansari, L., Khademi, A., & Ramakrishna, S. (2023). Antioxidant Materials in Oral and Maxillofacial Tissue Regeneration: A Narrative Review of the Literature. Antioxidants, 12(594), 1–33. https://doi.org/10.3390/antiox12030594

Agung, I. G. A. A., & Palgunadi, I. N. P. T. (2022). Strategy for improving the quality of School Dental Health Efforts at Tabanan Public Health Center. Dental Journal, 55(4), 215–220. https://doi.org/10.20473/J.DJMKG.V55.I4.P215-220

Al-Falah, J., Prihatiningrum, B., & Nugroho, R. (2022). Perbandingan Efektivitas Enzim Bromelain dan Enzim Papain Terhadap Degradasi Jaringan Karies Dentin Sebagai Agen Chemo-Mechanical Caries Removal. Jurnal Kedokteran Gigi Universitas Padjadjaran, 34(1), 58. https://doi.org/10.24198/jkg.v34i1.34457

Almhöjd, U. S., Norén, J. G., Arvidsson, A., Nilsson, Å., & Lingström, P. (2014). Analysis of carious dentine using FTIR and ToF-SIMS. Oral Health and Dental Management, 13(3), 735–744.

Amin, F., Fareed, M. A., Zafar, M. S., Khurshid, Z., Palma, P. J., & Kumar, N. (2022). Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. Coatings, 12(8), 1–24. https://doi.org/10.3390/coatings12081094

Ananda, A., Putri, D., & Diana, S. (2018). Daya Hambat Ekstrak Ubi Bawang Dayak (Eleutherine Palmifolia (L.) Merr) Terhadap Pertumbuhan Streptococcus Mutans (Studi In Vitro Dengan Metode Difusi). Dentin, 2(1), 85–90.

Apriasari, M. L., Pramitha, S. R., Puspitasari, D., & Ernawati, D. S. (2020). Anti-Inflammatory Effect of Musa acuminata Stem. European Journal of Dentistry, 14(2), 294–298. https://doi.org/10.1055/s-0040-1709944

Aziz, S., Ana, I. D., Yusuf, Y., & Pranowo, H. D. (2023). Synthesis of Biocompatible Silver-Doped Carbonate Hydroxyapatite Nanoparticles Using Microwave-Assisted Precipitation and In Vitro Studies for the Prevention of Peri-Implantitis. J. Funct. Biomater, 14(385), 1–14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382064/

Boteon, A. P., Kato, M. T., Buzalaf, M. A. R., Prakki, A., Wang, L., Rios, D., & Honório, H. M. (2017). Effect of Proanthocyanidin-enriched extracts on the inhibition of wear and degradation of dentin demineralized organic matrix. Archives of Oral Biology, 84(October 2016), 118–124. https://doi.org/10.1016/j.archoralbio.2017.09.027

Cardoso, F., Boteon, A. P., da Silva, T. A. P., Prakki, A., Wang, L., & Honório, H. M. (2020). In Situ Effect of A Proanthocyanidin Mouthrinse on Dentin Subjected to Erosion. Journal of Applied Oral Science, 28, 1–7. https://doi.org/10.1590/1678-7757-2020-0051

Dwiandhono, I., Agus Imam, D. N., & Mukaromah, A. (2019). Applications of Whey Extract and Cpp-Acp in Email Surface Towards Enamel Surface Hardness After Extracoronal Bleaching. Jurnal Kesehatan Gigi, 6(2), 93–98. https://doi.org/10.31983/jkg.v6i2.5481

Epasinghe, Yiu, C., & Burrow, M. F. (2016). Effect of flavonoids on remineralization of artificial root caries. https://doi.org/10.1111/adj.12367

Goldberg, M. (2021). Lipids in Enamel and Dentin : Involvement in Mineralization. 82–90.

Guanipa Ortiz, M., Alencar, C., Freitas De Paula, B., Alves, E., Nogueira Araújo, J., & Silva, C. (2019). Effect of the casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF) and photobiomodulation (PBM) on dental hypersensitivity: A randomized controlled clinical trial. PLoS ONE, 14(12), e0225501. https://doi.org/10.1371/journal.pone.0225501

Huang, L., Zhang, X., Shao, J., Zhou, Z., Chen, Y., & Hu, X. (2020). Nanoscale chemical and mechanical heterogeneity of human dentin characterized by AFM-IR and bimodal AFM. Journal of Advanced Research, 22, 163–171. https://doi.org/10.1016/j.jare.2019.12.004

Karteva, E., & Manchorova, N. (2019). Root Dentin Analysis from using Fourier-Transform Infrared Spectroscopy with Attenuated Total. 8(5), 2123–2126. https://api.semanticscholar.org/CorpusID:198943574

Kemenkes RI. (2018). Riset Kesehatan Dasar: RISKESDAS. In Badan Penelitian dan Pengembangan Kesehatan (p. 674).

Kim, J. H., Han, G. J., Kim, C. K., Oh, K. H., Chung, S. N., Chun, B. H., & Cho, B. H. (2016). Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma. European Journal of Oral Sciences, 124(1), 89–95. https://doi.org/10.1111/eos.12246

Liu, Y., Yao, X., Liu, Y. W., & Wang, Y. (2014). A fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone. Caries Research, 48(4), 320–329. https://doi.org/10.1159/000356868

Lopes, C. de C. A., Limirio, P. H. J. O., Novais, V. R., & Dechichi, P. (2018). Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Applied Spectroscopy Reviews, 53(9), 747–769. https://doi.org/10.1080/05704928.2018.1431923

Martínez-Castaño, M., Díaz, D. P. M., Contreras-Calderón, J., & Cabrera, C. G. (2020). Physicochemical properties of bean pod (Phaseolus vulgaris) flour and its potential as a raw material for the food industry. Revista Facultad Nacional de Agronomia Medellin, 73(2), 9179–9187. https://doi.org/10.15446/rfnam.v73n2.81564

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science & Technology, 4(1), 97–118.

Nimbeni, B., Munaga, S., Alabsi, F. S., Khurbani, Z. H., Boreak, N., & Nimbeni, S. B. (2023). Amorphous Calcium Phosphate Based Tooth Remineralization Systems in Dentistry-A Systematic Review of in-Vitro Studies. In J Int Dent Med Res (Vol. 16, Issue 1). http://www.jidmr.com

Paik, Y., Kim, J.-H., Yoo, K.-H., Yoon, S.-Y., & Kim, Y.-I. (2022). Dentin Biomodification with Flavonoids and Calcium Phosphate Ion Clusters to Improve Dentin Bonding Stability. Materials, 15, 1494. https://doi.org/10.3390/ma15041494

Pang, S., Su, F. Y., Green, A., Salim, J., McKittrick, J., & Jasiuk, I. (2021). Comparison of different protocols for demineralization of cortical bone. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-86257-4

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2014). Introduction to spectroscopy. In Tetrahedron Organic Chemistry Series (Vol. 20, Issue C). Cengage learning. https://doi.org/10.1016/S1460-1567(00)80010-0

Polassi, M., De, T., Oliveira, S., Calheiros De Carvalho, A., Soman, L., Medeiros, M., André, T., Veiga, M., Frederico De Oliveira Graeff, C., Hortencia, A., González, M., Marcucci, M. C., Dos, S., Grecco, S., & Perlatti D’alpino, P. H. (2021). Influence of Dentin Priming with Tannin-Rich Plant Extracts on the Longevity of Bonded Composite Restorations. The Scientific World Journal, 2021, 1–10. https://doi.org/10.1155/2021/1614643

Rodrigues, R. B., Soares, C. J., Junior, P. C. S., Lara, V. C., Arana-Chavez, V. E., & Novais, V. R. (2018). Influence of radiotherapy on the dentin properties and bond strength. Clinical Oral Investigations, 22(2), 875–883. https://doi.org/10.1007/s00784-017-2165-4

Sari, A. D., Fazrin, I., & Saputro, H. (2017). Pemberian Motivasi Orang Tua Dalam Menggosok Gigi Pada Anak Usia Prasekolah Terhadap Timbulnya Karies Gigi. Journal Of Nursing Practice, 1(1), 33–39. https://doi.org/10.30994/jnp.v1i1.20

Seredin, P., Goloshchapov, D., Ippolitov, Y., & Vongsvivut, J. (2019). Spectroscopic signature of the pathological processes of carious dentine based on FTIR investigations of the oral biological fluids. Biomedical Optics Express, 10(8), 4050. https://doi.org/10.1364/boe.10.004050

Srisomboon, S., Kettratad, M., Pakawanit, P., Rojviriya, C., Phantumvanit, P., & Panpisut, P. (2021). Effects of different application times of silver diamine fluoride on mineral precipitation in demineralized dentin. Dentistry Journal, 9(6). https://doi.org/10.3390/dj9060070

Sumual, I. A., Pangemanan, D. H. C., & Wowor, V. N. S. (2016). Keparahan Karies Gigi yang tidak Dirawat pada Siswa SD GMIM 31 Manado Berdasarkan Indeks PUFA. E-GIGI, 4(2). https://doi.org/10.35790/eg.4.2.2016.13937

Suwanto., Zahroh, R., & Fatmawati, L. (2017). Efikasi pisang (Musa paradisiaca L.) sebagai tanaman obat. In Pokjonas Toi (Vol. 3, pp. 79–83).

Tang, L., Zhu, L., Liu, Y., Zhang, Y., Li, B., & Wang, M. (2023). Crosslinking Improve Demineralized Dentin Performance and Synergistically Promote Biomimetic Mineralization by CaP_PILP. ACS Omega, 8, 14410–14419. https://doi.org/10.1021/acsomega.2c07825

Wahyudi, M. D., Syahrina, F., Carabelly, A. N., & Puspitasari, D. (2022). Formulasi dan Uji Stabilitas Fisik Gel Ekstrak Batang Pisang Mauli (Musa acuminata). Dentin Jurnal Kedokteran Gigi, 4(3), 161–165.

Zhou, Z., Ge, X., Bian, M., Xu, T., Li, N., Lu, J., & Yu, J. (2020). Remineralization of dentin slices using casein phosphopeptide-amorphous calcium phosphate combined with sodium tripolyphosphate. BioMedical Engineering Online, 19(1), 1–14. https://doi.org/10.1186/s12938-020-0756-9



DOI: https://doi.org/10.22146/mot.90537

Article Metrics

Abstract views : 83 | views : 41

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Majalah Obat Tradisional

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

©Majalah Obat Tradisional (Traditional Medicine Journal)
 ISSN 2406-9086
Faculty of Pharmacy
Universitas Gadjah Mada