Phytochemical Analysis and Anti-Collagenase Activity of Celery (Apium graveolens L.) Extract
Fahrizal Amanda Permana(1), Meitha Khansa Khairunnisa(2), Purwanto Purwanto(3), Sri Handayani(4), Riris Istighfari Jenie(5*)
(1) Undergraduate Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, DIY
(2) Undergraduate Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, DIY
(3) Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, DIY
(4) Research Center for Food Technology and Processing, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Yogyakarta
(5) *) Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, DIY *) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, DIY
(*) Corresponding Author
Abstract
Aging is a normal process experienced by humans. One of the causes of aging is the body's intrinsic activity, such as the activity of one of the extracellular matrix-breaking enzymes, collagenase. Demand for skin care to prevent aging is increasing, especially plant-based skin care. This study aims to explore the potency of celery extract as an anti-collagenase. In this study, we used celery extract as a sample obtained from the maceration process by seventy percent ethanol 70% as the solvent. Sample compounds are then detected by LC-HRMS to determine the major compounds contained in a sample and their concentrations. Anti-collagenase activity was observed by enzymatic assay. The LC-HRMS analysis confirmed that apigenin, hispidulin, and catechin were included in the celery extract, with apigenin as the major compound of celery with AUC 73479.21×103, the AUC of hispidulin is 17063.21×103, and catechin 61.14×103. The percentage of collagenase inhibition of celery extract up until 200 μg/mL was 59.22% with an IC50 value of 132.48 µg/mL. These data indicated that celery containing apigenin, hispidulin, and catechin has an anti-collagenase activity worth further exploring for a healthy skin supplement.
Keywords
Full Text:
PDFReferences
Akram, M. et al. (2015). Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. Journal of Ethnopharmacology. 174. pp. 322–330. Available at: https://doi.org/10.1016/j.jep.2015.08.028
Arsenov, D. et al. (2021). Roots of Apium graveolens and Petroselinum crispum—Insight into Phenolic Status against Toxicity Level of Trace Elements. Plants. 10(9). p. 1785. Available at: https://doi.org/10.3390/plants10091785
Artanti, N., Dewijanti, I. D., Muzdalifah, D., Windarsih, A., Suratno, S., & Handayani, S. 2023. Alpha-glucosidase inhibitory activity of the combination of Caesalpinia sappan L. and Garcinia mangostana extract. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2023.117478
Chaiprasongsuk, A. et al. (2017) ‘Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin’, Journal of Pharmacology and Experimental Therapeutics, 360(3), pp. 388–398. Available at: https://doi.org/10.1124/jpet.116.238048.
Crascì, L. et al. (2017) ‘Correlating In Vitro Target-Oriented Screening and Docking: Inhibition of Matrix Metalloproteinases Activities by Flavonoids’, Planta Medica, 83(11), pp. 901–911. Available at: https://doi.org/10.1055/s-0043-104775.
de Bievre, P., Böttger, D., Eastwood, C., Hlavay, J., Holmgren, M., & Horwitz, W. (1998). The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. Eurachem.
de Jager, T. L., Cockrell, A. E., & Du Plessis, S. S. (2017). Ultraviolet Light Induced Generation of Reactive Oxygen Species. Advances in experimental medicine and biology, 996, 15–23. https://doi.org/10.1007/978-3-319-56017-5_2
Ganceviciene, R. et al. (2012) ‘Skin anti-aging strategies’, Dermato-endocrinology, 4(3), p. 308. Available at: https://doi.org/10.4161/DERM.22804.
Hwang, Y.P. et al. (2011) ‘The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells’, Journal of Dermatological Science, 61(1), pp. 23–31. Available at: https://doi.org/10.1016/j.jdermsci.2010.10.016
Ingale, D. R., Kulkarni, P. G., Koppikar, S. J., Harsulkar, A. M., Moghe, A. S., & Jagtap, S. D. (2018). Reduced synovial inflammation and inhibition of matrix metalloproteinases explicates anti-osteoarthritis activity of polyherbal formulations. Indian Journal of Pharmacology, 50(1), 22.https://doi.org/10.4103/ijp.IJP_29_17
Jackson, J.K. et al. (2010) ‘The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate’, Journal of Materials Science: Materials in Medicine, 21(5), pp. 1435–1443. Available at: https://doi.org/10.1007/s10856-010-4019-3
Jia, L., Shi, L., Li, J., Zeng, Y., Tang, S., Liu, W., Mo, X., & Liu, X. (2020). Total flavonoids from celery suppresses RANKL-induced osteoclast differentiation and bone resorption function via attenuating NF-κB and p38 pathways in RAW264.7 cells. Journal of Functional Foods, 69, 103949.https://doi.org/10.1016/j.jff.2020.103949
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642.https://doi.org/10.3390/ijms22094642
Juurikka et al. (2019) ‘The Role of MMP8 in Cancer: A Systematic Review’, International Journal of Molecular Sciences, 20(18), p. 4506. Available at: https://doi.org/10.3390/ijms20184506
Krakowska-Sieprawska, A., Kiełbasa, A., Rafińska, K., Ligor, M., & Buszewski, B. (2022). Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules (Basel, Switzerland), 27(3), 730. https://doi.org/10.3390/molecules27030730
Kemenkes Republik Indonesia. (2017). Farmakope Herbal Indonesia (2nd ed.). Kementerian Kesehatan Republik Indonesia.
Lee, J.-H. et al. (2007) ‘Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules’, Archives of Pharmacal Research, 30(10), pp. 1318–1327. Available at: https://doi.org/10.1007/BF02980273
Lee, S. et al. (2020) ‘Potential Anti-Skin Aging Effect of (-)-Catechin Isolated from the Root Bark of Ulmus davidiana var. japonica in Tumor Necrosis Factor-α-Stimulated Normal Human Dermal Fibroblasts’, Antioxidants, 9(10), p. 981. Available at: https://doi.org/10.3390/antiox9100981
Lim, H. and Kim, H. (2007) ‘Inhibition of Mammalian Collagenase, Matrix Metalloproteinase-1, by Naturally-Occurring Flavonoids’, Planta Medica, 73(12), pp. 1267–1274. Available at: https://doi.org/10.1055/s-2007-990220
Madhan, B. et al. (2007) ‘Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase’, International Journal of Biological Macromolecules, 41(1), pp. 16–22. Available at: https://doi.org/10.1016/j.ijbiomac.2006.11.013
Mandrone, M., Coqueiro, A., Poli, F., Antognoni, F., & Choi, Y. H. (2018). Identification of a Collagenase-Inhibiting Flavonoid from Alchemilla vulgaris Using NMR-Based Metabolomics. Planta Medica, 84(12–13), 941–946.https://doi.org/10.1055/a-0630-2079
Martin-Martinez, A., Sánchez-Marzo, N., Martínez-Casanova, D., Abarquero-Cerezo, M., Herranz-López, M., Barrajón-Catalán, E., & Matabuena-Yzaguirre, M. (2022). High global antioxidant protection and stimulation of the collagen synthesis of new anti-aging product containing an optimized active mix. Journal of cosmetic dermatology, 21(9), 3993–4000. https://doi.org/10.1111/jocd.14703
Mishra P, Singh U, Pandey CM, Mishra P, Pandey G. (2019). Application of student's t-test, analysis of variance, and covariance. Ann Card Anaesth. 22(4):407-411. doi: https://doi.org/10.4103/aca.ACA_94_19
Muchtaridi, M., Az-Zahra, F., Wongso, H., Setyawati, L. U., Novitasari, D., & Ikram, E. H. (2024). Molecular mechanism of natural food antioxidants to regulate ROS in treating cancer: A Review. Antioxidants, 13(2), 207. https://doi.org/10.3390/antiox13020207
Murphy, G. (2016). Matrix Metalloproteinases. Encyclopedia of Cell Biology. 621–629.
Nuningtyas, Y. F., Sjofjan, O., Djunaidi, I. H., & Natsir, M. H. (2020). Celery (Apium graveolens L.) extraction as the inhibition of pathogenic microorganism in broilers. IOP Conference Series: Earth and Environmental Science, 411(1), 012026.https://doi.org/10.1088/1755-1315/411/1/012026
Nur, S., Rumiyati, & Lukitaningsih, E. (2017). Skrining Aktivitas Antioksidan, Antiaging, dan Penghambatan Tyrosinase dari Ekstrak Etanolik dan Etil Asetat Daging Buah dan Kulit Buah Langsat (Lansium domesticum Corr.) secara In Vitro. Traditional Medicine Journal, 22(1), 63–72.
Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042.https://doi.org/10.1021/np9904509
Prakoso, Y. A., Rini, C. S., Rahayu, A., Sigit, M., & Widhowati, D. (2020). Celery (Apium graveolens) as a potential antibacterial agent and its effect on cytokeratin-17 and other healing promoters in skin wounds infected with methicillin-resistant Staphylococcus aureus. Veterinary World, 13(5), 865–871.https://doi.org/10.14202/vetworld.2020.865-871
Qu, X.-J. et al. (2009) ‘Protective effects of Salvia plebeia compound homoplantaginin on hepatocyte injury’, Food and Chemical Toxicology, 47(7), pp. 1710–1715. Available at: https://doi.org/10.1016/j.fct.2009.04.032
Rahayu, A., Apritya, D., Yulianto, A. B., Putri, E. Y. (2023). Uji Toksisitas Akut Ekstrak Seledri (Apium graveolens L.) Terhadap Histopatologi Hepar Tikus (Sprague dawley). VITEK : Bidang Kedokteran Hewan, 13(1), 70-76. https://doi.org/https://doi.org/10.30742/jv.v13i1.181
Rosenblatt, J., Reitzel, R., Viola, G., Vargas-Cruz, N., Selber, J., & Raad, I. (2017). Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections. BioMed Research International, 2017, 1–8.https://doi.org/10.1155/2017/3149536
Singh, M., Nara, U., kaur, K., Rani, N., & Jaswal, C. (2022). Genetic, genomic and biochemical insights of celery (Apium graveolens L.) in the era of molecular breeding. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100420.https://doi.org/10.1016/j.jarmap.2022.100420
Suharyanto, S., & Prima, D. A. N. (2020). Penetapan Kadar Flavonoid Total pada Juice Daun Ubi Jalar Ungu (Ipomoea batatas L.) yang Berpotensi sebagai Hepatoprotektor
dengan Metode Spektrofotometri UV-Vis. Cendekia Journal of Pharmacy, 4(2), 110–119.
Thring, T. S., Hili, P., & Naughton, D. P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine, 9, 27.https://doi.org/10.1186/1472-6882-9-27
Turner, L., Lignou, S., Gawthrop, F., & Wagstaff, C. (2021). Investigating the factors that influence the aroma profile of Apium graveolens: A review. Food Chemistry, 345, 128673.https://doi.org/10.1016/j.foodchem.2020.128673
Wang, X. and Khalil, R.A. (2018) ‘Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease’, Advances in Pharmacology, 81, pp. 241–330. Available at: https://doi.org/10.1016/BS.APHA.2017.08.002
Xie, L. et al. (2022) ‘Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo’, Foods, 11(6), p. 882. Available at: https://doi.org/10.3390/foods11060882
Zhang, S. and Duan, E. (2018) ‘Fighting against Skin Aging: The Way from Bench to Bedside’, Cell Transplantation, 27(5), p. 729. Available at: https://doi.org/10.1177/0963689717725755.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Majalah Obat Tradisional

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada
.png)
.png)



