Fourier-transform Infrared (FTIR) Characterization and Radical Scavenging Activity Ziziphus spina-christi (Rhamnaceae) Rootbark Fractions

https://doi.org/10.22146/mot.95278

Mubarak Muhammad Dahiru(1*), Alkasim Yahaya Hauwa(2), Muhammad Zainab(3), Pwadumadi Pius(4), Nuhu Dangana Yakubu(5)

(1) Department of Pharmaceutical Technology, Adamawa State Polytechnic, Yola, Adamawa State
(2) Department of Biochemistry, Baze University, Abuja
(3) Department of Internal Medicine, University of Debrecen
(4) Department of Science Laboratory Technology, Adamawa State Polytechnic, Yola, Adamawa State
(5) Department of Science Laboratory Technology, Adamawa State Polytechnic, Yola, Adamawa State
(*) Corresponding Author

Abstract


This study focused on the secondary metabolite characterization and radical scavenging activity of the chloroform (CF), ethyl acetate (EF), and aqueous fractions (AF) of Ziziphus spina-christi to ascertain its therapeutic potential against oxidative stress. Fourier-transform infrared (FTIR) characterization and determination of in vitro radical scavenging activity of the plant were carried out. Alkaloids, saponins, and flavonoids were present in all the fractions with steroids absent in the AF. The FTIR characterization detected alcohol, conjugated alkenes, and amine groups in the CF and EF. However, alkanes, aromatic amines, sulfonates, and monosubstituted alkanes were also detected in the latter. Moreover, carboxylic acid, alkane, alkene, amines, and phenols were identified in the AF. The EF (72.46 ± 0.55 µg/ml AAE) and AF (71.51± 0.46 µg/ml AAE) demonstrated a significantly (p < 0.05) higher total antioxidant capacity (TAC) than CF (50.33 ±0.27 µg/ml AAE). The AF (54.07 ± 0.97 µg/ml AAE) exhibited a significantly (p < 0.05) higher total reducing power (TRP) than the EF (42.76 ± 1.60 µg/ml AAE) and CF (30.13 ± 1.32 µg/ml AAE). A significantly (p < 0.05) higher percentage of lipid peroxidation inhibition was exhibited by the CF (71.25% ±3.41) compared to the EF (54.17% ±2.66). Moreover, all the fractions showed significantly (p < 0.05) higher inhibition than ascorbic acid (18.33% ±1.56). The CF (0.16 ±0.01 nmol/ml) and EF (0.21 ±0.01 nmol/ml) demonstrated a significantly (p < 0.05) lower MDA concentration than the AF (0.42 ±0.01 nmol/ml) and ascorbic acid (0.38 ±0.02 nmol/ml). Conclusively, the Z. spina rootbark has potential antioxidant application in oxidative stress therapy with a focus on anti-lipid peroxidation for the CF though the AF has better TAC and TRP.


Keywords


Antioxidants; Antioxidant activity; in vitro activity; Lipid peroxidation; Malonaldehyde concentration; Oxidative stress

Full Text:

PDF


References

Afieroho, O. E., Ndukauba, E. C. & Ibok, F. S. (2020). Activity Guided Fractionation of Anchomanes difformis (Blume) Engl.(ARACEAE) Stem Ethanol Extract: in Search of Free Radical Scavenging Agents. Haya Saudi Journal of Life Sciences, 5, 38-45.

Ahn, E. Y. & Park, Y. (2020). Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering: C, 116, 111253.

Akbari, B., Najafi, F., Bahmaei, M., Mahmoodi, N. M. & Sherman, J. H. (2023). Modeling and optimization of malondialdehyde (MDA) absorbance behavior through response surface methodology (RSM) and artificial intelligence network (AIN): An endeavor to estimate lipid peroxidation by determination of MDA. Journal of Chemometrics, 37, e3468.

Amraei, S. & Ahmadi, S. (2022). Recent studies on antimicrobial and anticancer activities of saponins: A mini-review. Nano Micro Biosystems, 1, 22-26.

Asgarpanah, J. & Haghighat, E. (2012). Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. African journal of pharmacy and pharmacology, 6, 2332-2339.

Ballus, C. A., Meinhart, A. D., De Souza Campos, F. A. & Godoy, H. T. (2015). Total phenolics of virgin olive oils highly correlate with the hydrogen atom transfer mechanism of antioxidant capacity. J. Am. Oil Chem. Soc., 92, 843-851.

Barreca, D. (2020). Mechanisms of plant antioxidants action. Plants, 10, 35.

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World allergy organization journal, 5, 9-19.

Charlton, N. C., Mastyugin, M., Török, B. & Török, M. (2023). Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules, 28, 1057.

Chikezie, P. C., Ojiako, O. A. & Ogbuji, A. C. (2015). Oxidative stress in diabetes mellitus. Int J Biol Chem, 9, 92-109.

Choe, E. & Min, D. B. (2009). Mechanisms of antioxidants in the oxidation of foods. Comprehensive reviews in food science and food safety, 8, 345-358.

Chóez-Guaranda, I., Viteri-Espinoza, R., Barragán-Lucas, A., Quijano-Avilés, M. & Manzano, P. (2022). Effect of solvent-solvent partition on antioxidant activity and GC-MS profile of Ilex guayusa Loes. leaves extract and fractions. Nat. Prod. Res., 36, 1570-1574.

Cui, Y., Liu, B., Sun, X., Li, Z., Chen, Y., Guo, Z., Liu, H., Li, D., Wang, C., Zhu, X. & Shi, Y. (2020). Protective effects of alfalfa saponins on oxidative stress-induced apoptotic cells. Food Funct., 11, 8133-8140.

Culhuac, E. B., Maggiolino, A., Elghandour, M. M. M. Y., De Palo, P. & Salem, A. Z. M. (2023). Antioxidant and anti-inflammatory properties of phytochemicals found in the yucca genus. Antioxidants, 12, 574.

Dahiru, M. M. (2023). Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research, 7, 13-20.

Dahiru, M. M., Ahmadi, H., Faruk, M. U., Aminu, H., Hamman & Abreme, G. C. (2023a). Phytochemical Analysis and Antioxidant Potential of Ethylacetate Extract of Tamarindus Indica (Tamarind) Leaves by Frap Assay. Journal of Fundamental and Applied Pharmaceutical Science, 3, 45-53.

Dahiru, M. M., Alfa, M. B., Abubakar, M. A. & Abdulllahi, A. P. (2024a). Assessment of in silico antioxidant, anti-inflammatory, and antidiabetic activites of Ximenia americana L. Olacaceae. Advances in Medical, Pharmaceutical and Dental Research, 4, 1-13.

Dahiru, M. M., Badgal, E. B. & Musa, N. (2022). Phytochemistry, GS-MS analysis, and heavy metals composition of aqueous and ethanol stem bark extracts of Ximenia americana. GSC Biological and Pharmaceutical Sciences, 21, 145-156.

Dahiru, M. M. & Musa, N. (2024). Phytochemical Profiling, Antioxidant, Antidiabetic, and ADMET Study of Diospyros mespiliformis Leaf, Hochst Ex A. Dc Ebenaceae. J. Fac. Pharm. Ankara/Ankara Ecz. Fak. Derg, 48, 412-435.

Dahiru, M. M., Musa, N., Abaka, A. M. & Abubakar, M. A. (2023b). Potential Antidiabetic Compounds from Anogeissus leiocarpus: Molecular Docking, Molecular Dynamic Simulation, and ADMET Studies. Borneo Journal of Pharmacy, 6, 249-277.

Dahiru, M. M. & Nadro, M. S. (2022a). Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. Journal of Experimental and Molecular Biology, 23, 29-36.

Dahiru, M. M. & Nadro, M. S. (2022b). Phytochemical Composition and Antioxidant Potential of Hyphaene thebaica Fruit. Borneo Journal of Pharmacy, 5, 325-333.

Dahiru, M. M., Umar, A. S., Muhammad, M., Fari, I. I. & Musa, Z. Y. (2024b). Phytoconstituents, Fourier-Transform Infrared Characterization, and Antioxidant Potential of Ethyl Acetate Extract of Corchorus olitorius (Malvaceae). Sciences of Phytochemistry, 3, 1-10.

Dahiru, M. M., Umar, A. S., Muhammad, M., Waziri, A. U. A., Fari, I. I. & Musa, Z. Y. (2024c). Phytoconstituents, Fourier-Transform Infrared Characterization, and Antioxidant Potential of Ethyl Acetate Extract of Corchorus olitorius (Malvaceae). 3, 1-10.

Evans, W. C. (2009). Trease and Evans' pharmacognosy, Elsevier Health Sciences.

Franco, R., Navarro, G. & Martínez-Pinilla, E. (2019). Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants, 8, 373.

Gaikwad, S. R. & Srivastava, S. K. (2022). Antioxidant activity of phytochemicals in cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer.

Gomathi, S. & Maneemegalai, S. (2023). Phytochemical Analysis and In vitro Anti-oxidant Activities of Medicinal Plants Cyperus rotundus, Tinospora cordifolia and their Formulation. Oriental Journal of Chemistry, 39, 712-720.

Gul, R., Jan, S. U., Faridullah, S., Sherani, S. & Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal, 2017 5873648.

He, H. J., Huang, N., Cao, R. J. & Meng, L. J. (2015). Structures, antioxidation mechanism, and antioxidation test of the common natural antioxidants in plants. Biophysics, 3, 25-47.

Hunyadi, A. (2019). The mechanism (s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev., 39, 2505-2533.

Hussein, A. S. (2019). Ziziphus spina-christi: Analysis of bioactivities and chemical composition. Wild Fruits: Composition, Nutritional Value and Products, 175-197.

Ivanova, A., Gerasimova, E. & Gazizullina, E. (2020). Study of antioxidant properties of agents from the perspective of their action mechanisms. Molecules, 25, 4251.

Khan, H., Saeedi, M., Nabavi, S. M., Mubarak, M. S. & Bishayee, A. (2019). Glycosides from medicinal plants as potential anticancer agents: Emerging trends towards future drugs. Curr. Med. Chem., 26, 2389-2406

Kikuzaki, H. & Nakatani, N. (1993). Antioxidant effects of some ginger constituents. J. Food Sci., 58, 1407-1410.

Kıran, T. R., Otlu, O. & Karabulut, A. B. (2023). Oxidative stress and antioxidants in health and disease. Journal of Laboratory Medicine, 47, 1-11.

Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T. & K, S. (2023). Major phytochemicals: recent advances in health benefits and extraction method. Molecules, 28, 887.

Luan, F., Wei, L., Zhang, J., Mi, Y., Dong, F., Li, Q. & Guo, Z. (2018). Antioxidant activity and antifungal activity of chitosan derivatives with propane sulfonate groups. Polymers, 10, 395.

Macáková, K., Afonso, R., Saso, L. & Mladěnka, P. (2019). The influence of alkaloids on oxidative stress and related signaling pathways. Free Radical Biology and Medicine, 134, 429-444.

Markovic, Z. S., Milenkovic, D. A. & Filipovic, N. (2019). Different theoretical approaches in the study of antioxidative mechanisms. Computational Modeling in Bioengineering and Bioinformatics, 211.

Merck. (2023). IR Spectrum Table & Chart [Online]. Merck KGaA. Available: https://www.sigmaaldrich.com/NG/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table

[Accessed 13/01/2024 2023]

Miftode, A. (2022). Antioxidants: mechanisms of action and therapeutic applications. Medic.ro, 6, 1-8.

Mozzini, C. & Pagani, M. (2022). Oxidative stress in chronic and age-related diseases. Antioxidants, 11, 521.

Muema, F. W., Liu, Y., Zhang, Y., Chen, G. & Guo, M. (2022). Flavonoids from Selaginella doederleinii Hieron and Their Antioxidant and Antiproliferative Activities. Antioxidants, 11, 1189.

Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44, 307-315.

Prakash, B., Kumar, A., Singh, P. P. & Songachan, L. S. (2020). Antimicrobial and antioxidant properties of phytochemicals: Current status and future perspective. Functional and preservative properties of phytochemicals, 1-45.

Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 269, 337-341.

Quang, D. D., Thuy, N. T., Anh, H. T. N., Hieu, T. D., Quan, P. M., Long, P. Q., Cuong, N. M. & Phuong, D. L. (2022). Antioxidant potential of eight phenolic acids using high-performance density functional theory. Vietnam Journal of Science and Technology, 60, 21-32.

Rahaman, M. M., Hossain, R., Herrera‐Bravo, J., Islam, M. T., Atolani, O., Adeyemi, O. S., Owolodun, O. A., Kambizi, L., Daştan, S. D. & Calina, D. (2023). Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food science & nutrition, 11, 1657-1670.

Rammohan, A., Zyryanov, G. V., Bhagath, Y. B. & Manjula, K. (2023). Antioxidants: Structure–activity of plant polyphenolics. Vitam. Horm.: Elsevier.

Rosero, S., Del Pozo, F., Simbaña, W., Álvarez, M., Quinteros, M. F., Carrillo, W. & Morales, D. (2022). Polyphenols and Flavonoids Composition, Anti-Inflammatory and Antioxidant Properties of Andean Baccharis macrantha Extracts. Plants, 11, 1555.

Rusina, I. F., Veprintsev, T. L. & Vasil’ev, R. F. (2022). Antioxidant activity of diatomic phenols. Russian Journal of Physical Chemistry B, 16, 50-57.

Saied, A. S., Gebauer, J., Hammer, K. & Buerkert, A. (2008). Ziziphus spina-christi (L.) Willd.: a multipurpose fruit tree. Genet. Resour. Crop Evol., 55, 929-937.

Saini, V. (2022). The role of oxidative stress in kidney diseases. Novel Therapeutic Approaches Targeting Oxidative Stress. Elsevier.

Shaito, A., Aramouni, K., Assaf, R., Parenti, A., Orekhov, A., Yazbi, A. E., Pintus, G. & Eid, A. H. (2022). Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Frontiers in bioscience (Landmark edition), 23, 105.

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 383, 132531.

Sørensen, A. D. M., Nielsen, N. S., Decker, E. A., Let, M. B., Xu, X. & Jacobsen, C. (2011). The efficacy of compounds with different polarities as antioxidants in emulsions with omega-3 lipids. J. Am. Oil Chem. Soc., 88, 489-502.

Sundaram Sanjay, S. & Shukla, A. K. (2021). Mechanism of antioxidant activity. Potential Therapeutic Applications of Nano-antioxidants. Springer.

Türkoğlu, M., Pekmezci, E. & Sevinç, H. (2023). Antioxidants and Antiaging. In: ALASALVAR, C., SHAHIDI, F. & HO, C.-T. (eds.) Dietary Supplements with Antioxidant Activity: Understanding Mechanisms and Potential Health Benefits. The Royal Society of Chemistry.

Wakeel, A., Jan, S. A., Ullah, I., Shinwari, Z. K. & Xu, M. (2019). Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ, 7, e7857.

Wang, W. & Kang, P. M. (2020). Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants, 9, 1292.

Waśkiewicz, A., Beszterda, M. & Goliński, P. (2014). Nonenzymatic antioxidants in plants. Oxidative damage to plants. Elsevier.

Whayne, F., Thomas, P., Saha, S. & Mukherjee, D. (2016). Antioxidants in the practice of medicine; what should the clinician know? Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 16, 13-20.

Zeliger, H. (2023). Total oxidative stress and disease. In: ZELIGER, H. I. (ed.) Oxidative Stress: Its Mechanisms and Impacts on Human Health and Disease Onset. Academic Press.

Zenkov, N. K., Menshchikova, E. B., Kandalintseva, N. V., Oleynik, A. S., Prosenko, A. E., Gusachenko, O. N., Shklyaeva, O. A., Vavilin, V. A. & Lyakhovich, V. V. (2007). Antioxidant and antiinflammatory activity of new water-soluble sulfur-containing phenolic compounds. Biochemistry (Moscow), 72, 644-651.

Zhang, Y., Shen, Y., Zhu, Y. & Xu, Z. (2015). Assessment of the correlations between reducing power, scavenging DPPH activity and anti-lipid-oxidation capability of phenolic antioxidants. LWT - Food Sci. Technol., 63, 569-574.

Zhong, Y. & Shahidi, F. (2012). Antioxidant behavior in bulk oil: Limitations of polar paradox theory. Journal of Agricultural and Food Chemistry, 60, 4-6.



DOI: https://doi.org/10.22146/mot.95278

Article Metrics

Abstract views : 1457 | views : 618

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Majalah Obat Tradisional

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

©Majalah Obat Tradisional (Traditional Medicine Journal)
 ISSN 2406-9086
Faculty of Pharmacy
Universitas Gadjah Mada