Cytotoxicity Study of Plantago major L. Extracts on RAW 264.7 Macrophages
Ahmad Marzuki(1), Triana Hertiani(2*), Retno Murwanti(3), Kurnia Rahayu Purnomo Sari(4), Almira Rahmayani(5)
(1) *) Pharmaceutical Sciences Magister Study Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Daerah Istimewa Yogyakarta *) Medical Laboratory Technology Faculty, Health Polytechnic Ministry of Health Maluku, Ambon, Maluku
(2) Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Daerah Istimewa Yogyakarta
(3) Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Daerah Istimewa Yogyakarta
(4) Faculty of Health, Universitas Jenderal Achmad Yani Yogyakarta, Yogyakarta, Daerah Istimewa Yogyakarta
(5) Pharmaceutical Sciences Magister Study Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Daerah Istimewa Yogyakarta
(*) Corresponding Author
Abstract
The use of medicinal plants in modern medicine is on the rise, particularly in addressing diabetes and its associated complications, such as persistent inflammatory wounds. Plantago major L. (P. major) is known for its rich distribution of bioactive compounds and its efficacy in treating diabetes, wound healing, inflammation, and oxidative stress. Before in vitro drug efficacy testing, it is essential to assess the toxicity of P. major extract. This study aims to evaluate the toxicity of P. major extracts on RAW 264.7 cells cultured in high-glucose DMEM media. This preliminary assessment is crucial for determining safe extract concentrations for subsequent anti-inflammatory activity testing using macrophage cells cultured in a hyperglycemic condition. Extracts were obtained from both leaf and non-leaf parts using maceration and UAE methods, resulting in four extract types: macerated leaf (DM), UAE leaf (DU), macerated non-leaf (NM), and UAE non-leaf (NU). Each extract was prepared in seven concentration series ranging from 7.81 to 500 μg/mL. Toxicity was assessed using the MTT method to determine cell viability after a 4-hour incubation. Significance against the control was analyzed using one-way ANOVA, and the effects of different plant parts, extraction methods, and their interaction were evaluated using two-way ANOVA. Results indicated that concentrations of 7.81-500 μg/mL for all four extracts did not significantly reduce cell viability (p > 0.05) compared to the control, with leaf extracts exhibiting higher viability percentages than non-leaf extracts, especially with the UAE extraction method at a concentration of 250 μg/mL (106.73 ± 4.20%). Variations in plant parts significantly affected (p < 0.05) cell viability percentages, whereas differences in extraction methods and their interaction did not have a significant effect. In conclusion, this study demonstrates that the four extracts at concentrations of 7.81-500 μg/mL are non-toxic to RAW 264.7 cells. Therefore, they are safe to use in anti-inflammatory activity testing.
Keywords
Full Text:
PDFReferences
Adom, M. B., Taher, M., Mutalabisin, M. F., Amri, M. S., Abdul Kudos, M. B., Wan Sulaiman, M. W. A., Sengupta, P., & Susanti, D. (2017). Chemical constituents and medical benefits of Plantago major. Biomedicine & Pharmacotherapy, 96, 348–360. https://doi.org/10.1016/j.biopha.2017.09.152
Auliafendri, N., Rosidah, Yuandani, Suryani, S., & Satria, D. (2019). The Immunomodulatory Activities of Picria Fel-Terrae Lour Herbs towards RAW 264.7 Cells. Open Access Macedonian Journal of Medical Sciences, 7(1), 24–28. https://doi.org/10.3889/oamjms.2019.017
Caesar, L. K., & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869–888. https://doi.org/10.1039/c9np00011a
Cantuária, A. P. C., Figueiredo, T. M., Freire, M. S., Lima, S. M. F., Almeida, J. A., Franco, O. L., & Rezende, T. M. B. (2018). The effects of glucose concentrations associated with lipopolysaccharide and interferon-gamma stimulus on mediators’ production of RAW 264.7 cells. Cytokine, 107, 18–25. https://doi.org/10.1016/j.cyto.2017.11.008
Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8, 507887. https://doi.org/10.3389/fchem.2020.507887
Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35, 100547. https://doi.org/10.1016/j.fbio.2020.100547
Farid, A., Sheibani, M., Shojaii, A., Noori, M., & Motevalian, M. (2022). Evaluation of anti-inflammatory effects of leaf and seed extracts of Plantago major on acetic acid-induced ulcerative colitis in rats. Journal of Ethnopharmacology, 298, 115595. https://doi.org/10.1016/j.jep.2022.115595
García-Hernández, A., Arzate, H., Gil-Chavarría, I., Rojo, R., & Moreno-Fierros, L. (2012). High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone, 50(1), 276–288. https://doi.org/10.1016/j.bone.2011.10.032
Gavanji, S., Bakhtari, A., Famurewa, A. C., & Othman, E. M. (2023). Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chemistry & Biodiversity, 20(2), e202201098. https://doi.org/10.1002/cbdv.202201098
Ghanadian, M., Soltani, R., Homayouni, A., Khorvash, F., Jouabadi, S. M., & Abdollahzadeh, M. (2022). The Effect of Plantago major Hydroalcoholic Extract on the Healing of Diabetic Foot and Pressure Ulcers: A Randomized Open-Label Controlled Clinical Trial. The International Journal of Lower Extremity Wounds, 15347346211070723. https://doi.org/10.1177/15347346211070723
Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. International Journal of Molecular Sciences, 22(23), 12827. https://doi.org/10.3390/ijms222312827
Hartley, J. W., Evans, L. H., Green, K. Y., Naghashfar, Z., Macias, A. R., Zerfas, P. M., & Ward, J. M. (2008). Expression of infectious murine leukemia viruses by RAW 264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology, 5(1), 1. https://doi.org/10.1186/1742-4690-5-1
Jităreanu, A., Trifan, A., Vieriu, M., Caba, I.-C., Mârțu, I., & Agoroaei, L. (2023). Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes, 11(1), Article 1. https://doi.org/10.3390/pr11010083
Joo, T., Sowndhararajan, K., Hong, S., Lee, J., Park, S.-Y., Kim, S., & Jhoo, J.-W. (2014). Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi Journal of Biological Sciences, 21(5), 427–435. https://doi.org/10.1016/j.sjbs.2014.04.003
Kartini K, K., Islamie, R., & Handojo, C. S. (2018). Wound Healing Activity of Aucubin on Hyperglycemic Rat. Journal of Young Pharmacists, 10(2s), S136–S139. https://doi.org/10.5530/jyp.2018.2s.28
Kartini, K., Wati, N., Gustav, R., Wahyuni, R., Anggada, Y. F., Hidayani, R., Raharjo, A., Islamie, R., & Putra, S. E. D. (2021). Wound healing effects of Plantago major extract and its chemical compounds in hyperglycemic rats. Food Bioscience, 41, 100937. https://doi.org/10.1016/j.fbio.2021.100937
Kartini, Piyaviriyakul, S., Thongpraditchote, S., Siripong, P., & Vallisuta, O. (2017). Effects of Plantago major Extracts and Its Chemical Compounds on Proliferation of Cancer Cells and Cytokines Production of Lipopolysaccharide-activated THP-1 Macrophages. Pharmacognosy Magazine, 13(51), 393–399. https://doi.org/10.4103/pm.pm_406_16
Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor Protocols, 2018(6). https://doi.org/10.1101/pdb.prot095505
Panda, D., & Manickam, S. (2019). Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Applied Sciences, 9(4), Article 4. https://doi.org/10.3390/app9040766
Phumsuay, R., Muangnoi, C., Wasana, P. W. D., Hasriadi, Vajragupta, O., Rojsitthisak, P., & Towiwat, P. (2020). Molecular Insight into the Anti-Inflammatory Effects of the Curcumin Ester Prodrug Curcumin Diglutaric Acid In Vitro and In Vivo. International Journal of Molecular Sciences, 21(16). https://doi.org/10.3390/ijms21165700
Pintor, A. V. B., Queiroz, L. D., Barcelos, R., Primo, L. S. G., Maia, L. C., & Alves, G. G. (2020). MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: A systematic review. International Endodontic Journal, 53(10), 1348–1373. https://doi.org/10.1111/iej.13353
Sari, K. R. P., Ikawati, Z., Danarti, R., & Hertiani, T. (2023). Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arabian Journal of Chemistry, 16(9), 105003. https://doi.org/10.1016/j.arabjc.2023.105003
Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. https://doi.org/10.1016/j.ultsonch.2023.106646
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932
Sousa, E. S. A., Queiroz, L. A. D., Guimarães, J. P. T., Pantoja, K. C., Barros, R. S., Epiphanio, S., & Martins, J. O. (2023). The influence of high glucose conditions on macrophages and its effect on the autophagy pathway. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1130662
Subramanian, K., Sankaramourthy, D., & Gunasekaran, M. (2018). Chapter 18—Toxicity Studies Related to Medicinal Plants. In S. C. Mandal, V. Mandal, & T. Konishi (Eds.), Natural Products and Drug Discovery (pp. 491–505). Elsevier. https://doi.org/10.1016/B978-0-08-102081-4.00018-6
Sunarwidhi, A. L., Hernawan, A., Frediansyah, A., Widyastuti, S., Martyasari, N. W. R., Abidin, A. S., Padmi, H., Handayani, E., Utami, N. W. P., Maulana, F. A., Ichfa, M. S. M., & Prasedya, E. S. (2022). Multivariate Analysis Revealed Ultrasonic-Assisted Extraction Improves Anti-Melanoma Activity of Non-Flavonoid Compounds in Indonesian Brown Algae Ethanol Extract. Molecules, 27(21), 7509. https://doi.org/10.3390/molecules27217509
Tarique, A. A. (2016). Macrophage Polarization and Function in Cystic Fibrosis [PhD Thesis, The University of Queensland]. https://doi.org/10.14264/uql.2016.680
Triastuti, A., Pradana, D. A., Saputra, D. E., Lianika, N., Wicaksono, H. R., Anisari, T. D., & Widyarini, S. (2022). Anti-rheumatoid activity of a hexane-insoluble fraction from Plantago major in female Wistar rats induced by Complete Freund’s Adjuvant. Journal of Traditional and Complementary Medicine, 12(3), 219–224. https://doi.org/10.1016/j.jtcme.2021.07.006
van Tonder, A., Joubert, A. M., & Cromarty, A. D. (2015). Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Research Notes, 8, 47. https://doi.org/10.1186/s13104-015-1000-8
Zhakipbekov, K., Turgumbayeva, A., Issayeva, R., Kipchakbayeva, A., Kadyrbayeva, G., Tleubayeva, M., Akhayeva, T., Tastambek, K., Sainova, G., Serikbayeva, E., Tolenova, K., Makhatova, B., Anarbayeva, R., Shimirova, Z., & Tileuberdi, Y. (2023). Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae. Pharmaceuticals, 16(8), Article 8. https://doi.org/10.3390/ph16081092
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Majalah Obat Tradisional

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada
.png)
.png)



