In vivo Wound Healing Activity of Tamanu Oil (Calophyllum inophyllum l.) Extracted by Cold-Pressed and Hot-Pressed Methods and Their Fatty Acids Composition
Rita Rakhmawati(1*), Dinar Sari Cahyaningrum Wahyuni(2), Ahmad Ainurofiq(3), Saptono Hadi(4), Syaiful Choiri(5), Estu Retnaningtyas(6), Tiara Dewi Salindri Pratama(7)
(1) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(2) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(3) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(4) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(5) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(6) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(7) Department of Pharmacy, FMIPA, Universitas Sebelas Maret, Surakarta, Indonesia
(*) Corresponding Author
Abstract
Tamanu oil is a promising natural wound healer due to its chemical compounds, particularly fatty acids. Cold-pressed or hot-pressed methods are commonly used to obtain this oil from Calophyllum seed. However, there needs to be research documenting the impact of these two extraction methods on the fatty acid profile and wound healing activity. Therefore, the study aims to characterize the fatty acid profiles of cold-pressed and hot-pressed tamanu oils using Gas Chromatography and evaluate their wound healing activity in vivo. The fatty acid profiles were analyzed using GC, and the wound healing tests were conducted on animal subjects divided into four groups: negative control, positive control (Bioplacenton®), cold-pressed tamanu oil, and hot-pressed tamanu oil. Cold-pressed tamanu oil showed superior fatty acid characteristics with an acid value of 38,71 Mg KOH/g fat and a peroxide value of 3,0095 mEq O2/kg, indicating that oil is stable against oxidation. The length of the wound was observed daily for up to 8 days to assess its effect. The parameters observed were the percentage of wound healing and the total AUC based on the average length of the wound. Cold-pressed tamanu oil demonstrated the highest wound healing efficacy compared to both the positive control and hot-pressed tamanu oils. Both cold (11,67± 0,78) and hot-pressed tamanu oil (11,87 ± 0,61) exhibited significant differences in AUC value compared to the negative control group (13,07 ± 0,38), highlighting the potential of tamanu oil as a wound healing agent.
Keywords
Full Text:
PDFReferences
Abazari, M., Ghaffari, A., Rashidzadeh, H., Badeleh, S. M., & Maleki, Y. (2022). A Systematic Review on Classification, Identification, and Healing Process of Burn Wound Healing. The International Journal of Lower Extremity Wounds, 21(1), 18–30. https://doi.org/10.1177/1534734620924857
Agustin, R., Dewi, N., & Rahardja, S. . (2016). Efektivitas Ekstrak Ikan Haruan (Channa Striata) Dan Ibuprofen Terhadap Jumlah Sel Neutrofil Pada Proses Penyembuhan Luka Studi In Vivo Pada Mukosa Bukal Tikus (Rattus Norvegicus) Wistar. DENTINO; Jurnal Kedokteran Gigi, 1(1), 68–74.
Alaudiin, A., Mohamad, A., & Purwanti, N. U. (2016). Uji Efek Ikan Gabus (Channa striata) pada Luka Sayat dengan Tikus Putih Jantan Galur Wistar yang Diberikan Secara Oral. Jurnal Mahasiswa Farmasi Fakultas Kedokteran, 3(1), 1–12.
Ansel, J.-L., Lupo, E., Mijouin, L., Guillot, S., Butaud, J.-F., Ho, R., Lecellier, G., Raharivelomanana, P., & Pichon, C. (2016). Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells. Planta Medica, 82(11/12), 961–966. https://doi.org/10.1055/s-0042-108205
Balitbang Kehutanan. (2018). Nyamplung (Calophyllum inophyllum L.) Sumber Energi Biofuel yang Potensial. Badan Litbang Kehutanan Departemen Kehutanan.
Budiawan, A., Purwanto, A., Puradewa, L., Cahyani, E. D., & Purwaningsih, C. E. (2023). Wound Healing Activity and Flavonoid Contents of Purslane (Portulaca grandiflora) of Various Varieties. RSC Advances, 13(15), 9871–9877. https://doi.org/10.1039/D3RA00868A
Cardoso, C. R., Favoreto, S., Oliveira, L. L., Vancim, J. O., Barban, G. B., Ferraz, D. B., & Silva, J. S. (2011). Oleic Acid Modulation of the Immune Response in Wound Healing: A New Approach for Skin Repair. Immunobiology, 216(3), 409–415. https://doi.org/10.1016/j.imbio.2010.06.007
Choudhary, V., Choudhary, M., & Bollag, W. B. (2024). Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. International Journal of Molecular Sciences, 25(7), 1–29. https://doi.org/10.3390/ijms25073790
Criollo-Mendoza, M. S., Contreras-Angulo, L. A., Leyva-López, N., Gutiérrez-Grijalva, E. P., Jiménez-Ortega, L. A., & Heredia, J. B. (2023). Wound Healing Properties of Natural Products: Mechanisms of Action. Molecules, 28(2), 1–18. https://doi.org/10.3390/molecules28020598
Dweck, A. C., & Meadows, T. (2002). Tamanu ( Calophyllum inophyllum ) – the African, Asian, Polynesian and Pacific Panacea. International Journal of Cosmetic Science, 24(6), 341–348. https://doi.org/10.1046/j.1467-2494.2002.00160.x
Erdogan, S. S., Gur, T. F., Terzi, N. K., & Dogan, B. (2021). Evaluation of the Cutaneous Wound Healing Potential of Tamanu Oil in Wounds Induced in Rats. Journal of Wound Care, 30, 6–15. https://doi.org/10.12968/jowc.2021.30.Sup9a.V
Fan, P., Xie, S., Zhang, Z., Yuan, Q., He, J., Zhang, J., Liu, X., Liu, X., & Xu, L. (2024). Polygonum perfoliatum L. Ethanol Extract Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Inflammation. Journal of Ethnopharmacology, 319, 117288. https://doi.org/10.1016/j.jep.2023.117288
Feng, K., Tang, J., Qiu, R., Wang, B., Wang, J., & Hu, W. (2024). Fabrication of a core–Shell Nanofibrous Wound Dressing with an antioxidant Effect on Skin Injury. Journal of Materials Chemistry B, 12(9), 2384–2393. https://doi.org/10.1039/D3TB02911E
Ghanadian, M., Soltani, R., Homayouni, A., Khorvash, F., Jouabadi, S. M., & Abdollahzadeh, M. (2022). The Effect of Plantago major Hydroalcoholic Extract on the Healing of Diabetic Foot and Pressure Ulcers: A Randomized Open-Label Controlled Clinical Trial. The International Journal of Lower Extremity Wounds, 1–7. https://doi.org/10.1177/15347346211070723
Ghohestani, E., Tashkhourian, J., & Hemmateenejad, B. (2023). Colorimetric Determination of Peroxide Value in Vegetable Oils Using a Paper Based Analytical Device. Food Chemistry, 403, 134345. https://doi.org/10.1016/j.foodchem.2022.134345
Gunawan, S., Pamungkas, B., Primaswari, C. S., Hapsari, S., & Aparamarta, H. W. (2020). Calophyllolide Separation from Calophyllum inophyllum Oil by Silica Gel Adsorption. Materials Science Forum, 988(12), 101–107. https://doi.org/10.4028/www.scientific.net/MSF.988.101
Gunawan, Y., Pangkahila, A., & Darwinata, A. E. (2021). Topical Administration of Tamanu Oil (Calophyllum inophyllum) Inhibited the Increase of Matrix Metalloproteinase-1 (MMP-1) Expressions and Decrease of Collagen Dermis Amount in Male Wistar Rats Exposed to Ultraviolet B. Neurologico Spinale Medico Chirurgico, 4(3), 114–118. https://doi.org/10.36444/nsmc.v4i3.186
Hasibuan, S., Sahirman, & Yudawati, N. M. A. (2013). Karakteristik Fisikokimia dan Antibakteri Hasil Purifikasi Minyak Biji Nyamplung (Calophylum inophyllum L.). AGRITECH, 33(3), 311–319.
He, L., Di, D., Chu, X., Liu, X., Wang, Z., Lu, J., Wang, S., & Zhao, Q. (2023). Photothermal Antibacterial Materials to Promote Wound Healing. Journal of Controlled Release, 363, 180–200. https://doi.org/10.1016/j.jconrel.2023.09.035
Krishnappa, M., Abraham, S., Furtado, S. C., Krishnamurthy, S., Rifaya, A., Asiri, Y. I., Chidambaram, K., & Pavadai, P. (2024). An Integrated Computational and Experimental Approach to Formulate Tamanu Oil Bigels as Anti-Scarring Agent. Pharmaceuticals, 17(1), 1–15. https://doi.org/10.3390/ph17010102
Léguillier, T., Lecsö-Bornet, M., Lémus, C., Rousseau-Ralliard, D., Lebouvier, N., Hnawia, E., Nour, M., Aalbersberg, W., Ghazi, K., Raharivelomanana, P., & Rat, P. (2015). The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds. PLOS ONE, 10(9), 1–20. https://doi.org/10.1371/journal.pone.0138602
Liu, W.-H., Liu, Y.-W., Chen, Z.-F., Chiou, W.-F., Tsai, Y.-C., & Chen, C.-C. (2015). Calophyllolide Content in Calophyllum inophyllum at Different Stages of Maturity and Its Osteogenic Activity. Molecules, 20(7), 12314–12327. https://doi.org/10.3390/molecules200712314
Maleki, H., Doostan, M., Khoshnevisan, K., Baharifar, H., Maleki, S. A., & Fatahi, M. A. (2024). Zingiber officinale and Thymus vulgaris Extracts Co-Loaded Polyvinyl Alcohol and Chitosan Electrospun Nanofibers for Tackling Infection and Wound Healing Promotion. Heliyon, 10(1), 1–15. https://doi.org/10.1016/j.heliyon.2023.e23719
Morikawa, T., Nagatomo, A., Kitazawa, K., Muraoka, O., Kikuchi, T., Yamada, T., Tanaka, R., & Ninomiya, K. (2018). Collagen Synthesis-Promoting Effects of Andiroba Oil and its Limonoid Constituents in Normal Human Dermal Fibroblasts. Journal of Oleo Science, 67(10), 1271–1277. https://doi.org/10.5650/jos.ess18143
Mukhametov, A., Dautkanova, D., Kazhymurat, A., Yerbulekova, M., & Aitkhozhayeva, G. (2023). The Effects of Heat Treatment on the Oxidation Resistance and Fatty Acid Composition of the Vegetable Oil Blend. Journal of Oleo Science, 72(6), 597–604. https://doi.org/10.5650/jos.ess23010
Nachippan, N. M., Parthasarathy, M., Elumalai, P. V., Backiyaraj, A., Balasubramanian, D., & Hoang, A. T. (2022). Experimental Assessment on Characteristics of Premixed Charge Compression Ignition Engine Fueled with Multi-Walled Carbon Nanotube-Included Tamanu Methyl Ester. Fuel, 323, 124415. https://doi.org/10.1016/j.fuel.2022.124415
Nguyen, M. N., Le, T. D., Nguyen, B. V., Nguyen, T. N. L., Pioch, D., & Mai, H. C. (2021). Purification Trials of Tamanu (Calophyllum inophyllum L.) Oil. OCL, 28, 53–60. https://doi.org/10.1051/ocl/2021042
Nguyen, V.-L., Truong, C.-T., Nguyen, B. C. Q., Vo, T.-N. Van, Dao, T.-T., Nguyen, V.-D., Trinh, D.-T. T., Huynh, H. K., & Bui, C.-B. (2017). Anti-Inflammatory and Wound Healing Activities of Calophyllolide Isolated from Calophyllum inophyllum Linn. PLOS ONE, 12(10), 1–16. https://doi.org/10.1371/journal.pone.0185674
Pathak, P. C., & Gadgoli, C. H. (2024). Exploring the Efficacy of Panchavalkal Extract and Zinc-Copper Bhasma in Promoting Wound Healing in Incision and Excision Wound Models in the Rat. Journal of Ethnopharmacology, 320, 117404. https://doi.org/10.1016/j.jep.2023.117404
Pelin, I. M., Silion, M., Popescu, I., Rîmbu, C. M., Fundueanu, G., & Constantin, M. (2023). Pullulan/Poly(vinyl alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics, 15(6), 1–27. https://doi.org/10.3390/pharmaceutics15061674
Pereira, L. M., Hatanaka, E., Martins, E. F., Oliveira, F., Liberti, E. A., Farsky, S. H., Curi, R., & Pithon‐Curi, T. C. (2008). Effect of Oleic and Linoleic Acids on the Inflammatory Phase of Wound Healing in Rats. Cell Biochemistry and Function, 26(2), 197–204. https://doi.org/10.1002/cbf.1432
Qiu, X., Nie, L., Liu, P., Xiong, X., Chen, F., Liu, X., Bu, P., Zhou, B., Tan, M., Zhan, F., Xiao, X., Feng, Q., & Cai, K. (2024). From Hemostasis to Proliferation: Accelerating the Infected Wound Healing Through a Comprehensive Repair Strategy Based on GA/OKGM Hydrogel Loaded with MXene@TiO2 Nanosheets. Biomaterials, 308, 122548. https://doi.org/10.1016/j.biomaterials.2024.122548
Saeidi, S., Ghanadian, S. M., Poostiyan, N., & Soltani, R. (2024). Evaluation of the Effectiveness of Berberis integerrima Bunge Root Extract Combined with Spearmint Essential Oil in The Treatment of Acne Vulgaris: A Randomized Controlled Clinical Trial. Journal of Cosmetic Dermatology. https://doi.org/10.1111/jocd.16291
Safrina Hapsari, Hakun Wirawasista Aparamarta, Nurul Jadid, & Setiyo Gunawan. (2024). Extraction of Coumarin Mixture from Tamanu Oil using Food-Grade. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 111(2), 1–15. https://doi.org/10.37934/arfmts.111.2.115
Sanpinit, S., Chokpaisarn, J., Na-Phatthalung, P., Sotthibandhu, D. S., Yincharoen, K., Wetchakul, P., Limsuwan, S., & Chusri, S. (2024). Effectiveness of Ya-Samarn-Phlae in Diabetic Wound Healing: Evidence from In Vitro Studies and a Multicenter Randomized Controlled Clinical Trial. Journal of Ethnopharmacology, 326, 117929. https://doi.org/10.1016/j.jep.2024.117929
Tavakoli, J., Ghorbani, A., Hematian Sourki, A., Ghani, A., Zarei Jelyani, A., Kowalczewski, P. Ł., Aliyeva, A., & Mousavi Khaneghah, A. (2024). Thermal Processing of Pomegranate Seed Oils Underscores Their Antioxidant Stability and Nutritional Value: Comparison of Pomegranate Seed Oil with Sesame Seed Oil. Food Science & Nutrition, 12(3), 2166–2181. https://doi.org/10.1002/fsn3.3918
Tran, T. P. A., Luong, A. H., & Lin, W.-C. (2024). Characterizations of Centrifugal Electrospun Polyvinyl Alcohol/Sodium Alginate/Tamanu Oil/Silver Nanoparticles Wound Dressing. IEEE Transactions on NanoBioscience, 23(2), 368–377. https://doi.org/10.1109/TNB.2024.3371224
Yimdjo, M. C., Azebaze, A. G., Nkengfack, A. E., Meyer, A. M., Bodo, B., & Fomum, Z. T. (2004). Antimicrobial and Cytotoxic Agents from Calophyllum inophyllum. Phytochemistry, 65(20), 2789–2795. https://doi.org/10.1016/j.phytochem.2004.08.024
Zhao, D., Xiao, J., Qiang, L., Deng, X., An, J., Zhang, Q., Zhao, F., Ma, J., Fang, C., Guan, G., Wu, Y., & Xie, Y. (2022). Walnut Ointment Promotes Full-Thickness Burning Wound Healing: Role of Linoleic Acid. Acta Cirúrgica Brasileira, 37(9). https://doi.org/10.1590/acb370902
Zhao, Y., Zhu, L., Yang, L., Chen, M., Sun, P., Ma, Y., Zhang, D., Zhao, Y., & Jia, H. (2024). In Vitro and In Vivo Anti-Eczema Effect of Artemisia annua Aqueous Extract and Its Component Profiling. Journal of Ethnopharmacology, 318, 1–14. https://doi.org/10.1016/j.jep.2023.117065
DOI: https://doi.org/10.22146/mot.97146
Article Metrics
Abstract views : 109 | views : 91Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Majalah Obat Tradisional
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Faculty of Pharmacy
Universitas Gadjah Mada