SENSITIVITY ANALYSIS OF HYPERPARAMETER IN SOLAR ENERGY PREDICTION MODEL USING GRADIENT BOOSTING METHOD

Aska Ramadhan(1*), Bertha Maya Sopha(2), Mohammad Kholid Ridwan(3)
(1) Gadjah Mada University
(2) Gadjah Mada University
(3) Gadjah Mada University
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Ahmed Kutty, H., Masral, M. H., & Rajendran, P. (2015). Regression model to predict global solar irradiance in Malaysia. International Journal of Photoenergy, 2015(January). https://doi.org/10.1155/2015/347023 Barrera, J. M., Reina, A., Maté, A., & Trujillo, J. C. (2020). Solar energy prediction model based on artificial neural networks and open data. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176915 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785 Choi, S., & Hur, J. (2020). An ensemble learner-based bagging model using past output data for photovoltaic forecasting. Energies, 13(6). https://doi.org/10.3390/en13061438 IESR. (2021). Indonesia’s Largest of Solar Farm: Key Opportunities and Challenges. Indonesia’s Largest of Solar Farm. Ikhsan, M. (2020). Peramalan Energi Photovoltaic Dengan Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neighbors. Universitas Islam Indonesia. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 2017-Decem(Nips), 3147–3155. Kim, S. G., Jung, J. Y., & Sim, M. K. (2019). A two-step approach to solar power generation prediction based on weather data using machine learning. Sustainability (Switzerland), 11(5). https://doi.org/10.3390/SU11051501 Lai, J. P., Chang, Y. M., Chen, C. H., & Pai, P. F. (2020). A survey of machine learning models in renewable energy predictions. Applied Sciences (Switzerland), 10(17). https://doi.org/10.3390/app10175975 Li, B. (2020). Random Search Plus: A more effective random search for Random Search Plus: A more effective random search for machine learning hyperparameters optimization machine learning hyperparameters optimization. https://trace.tennessee.edu/utk_gradthes/5849 Martínez, C. F. (2018). Bachelor Degree Thesis - Machine Learning for Solar Energy Prediction. University of Gavle, May, 1–80. Microsoft Coorporation. (2022). lightgbm-readthedocs-io-en-latest. LightGBM Documentation. https://lightgbm.readthedocs.io/en/v3.3.2/ Reba, K., Bevc, J., Vásquez, A.-, & Jankovec, M. (2019). Photovoltaic Energy Production Forecasting using LightGBM. 55th International Conference on Microelectronics, Devices and Materials with the Workshop on Laser Systems and Photonics, 36–39. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569–582. https://doi.org/10.1016/j.renene.2016.12.095 Widodo, D. A., Iksan, N., Udayanti, E. D., & Djuniadi. (2021). Renewable energy power generation forecasting using deep learning method. IOP Conference Series: Earth and Environmental Science, 700(1). https://doi.org/10.1088/1755-1315/700/1/012026 XGBoost developers. (2022). xgboost-readthedocs-io-en-latest. XGBoost Documentation. https://xgboost.readthedocs.io/en/stable/ Zhou, Z., Lin, A., He, L., & Wang, L. (2022). Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China. Energies, 15(9). https://doi.org/10.3390/en15093463

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 ASEAN Journal of Systems Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Universitas Gadjah Mada