Pengaruh resistance training terhadap fungsi kognitif pada pasien mild cognitive impairment

https://doi.org/10.22146/bns.v20i1.103667

Ari Astuti(1*), Astuti Prodjohardjono(2), Indarwati Setyaningsih(3)

(1) SMF Saraf RSI Klaten, Jawa Tengah
(2) Departemen Neurologi, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta
(3) Departemen Neurologi, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


The prevalence of mild cognitive impairment (MCI) is quite high and increases with age at a rate of 21.5-71.3/1000 elderly and can experience conversion to dementia with a progression of 10-20% each year. According to the American Academy of Neurology (AAN) recommendation, resistance training (RT) type exercise is useful for improving cognitive function in MCI patients. However, the mechanisms, method, and effectivity are still unclear. The aim of this study is to assess the effect of RT on cognitive function in MCI patients, to know how and effective tools are used in RT for MCI patients. A systematic review was performed by searching the literature from October 2015 to October 2020 using the PRISMA reporting guidelines. Search for articles through Cochrane, PUBMED, EBSCO, Science Direct, and hand searching. From 13 journals, 3 journals were selected according to the inclusion and exclusion criteria, which were then assessed. All studies showed significant cognitive function improvements in the MMSE, MoCA, and ADAS-Cog scores. Low-strength elastic bands (HSPT/high-speed power training) are more effective than high-strength elastic bands (LSST/low-speed power training), and exercises that increase the strength of the inferior extremities are more effective at improving the cognitive domain than exercises on the superior limbs, and it decreases hippocampal volume retardation for up to 12 months after discontinuation of the intervention. HSPT in MCI patients that focuses on lower limb muscle strength effectively improves cognitive function and can slow the decrease in hippocampal volume for up to one year after exercise.

 

ABSTRAK

Prevalensi mild cognitive impairment (MCI) cukup tinggi dan meningkat seiring bertambahnya usia dengan laju 21,5-71,3/1000 kelompok lanjut usia dan dapat mengalami konversi menjadi demensia dengan progresi 10-20% setiap tahunnya. Menurut rekomendasi American Academy of Neurology (AAN), olahraga jenis resistance training (RT) bermanfaat untuk memperbaiki fungsi kognitif pada pasien MCI. Namun demikian mekanisme yang mempengaruhi, cara, dan alat yang efektif digunakan masih belum jelas. Tujuan tinjauan sistematis ini adalah untuk mengkaji pengaruh RT terhadap fungsi kognitif pada pasien MCI serta mengetahui cara dan alat yang efektif digunakan pada RT bagi pasien MCI. Tinjauan sistematis dilakukan dengan penelusuran kepustakaan dari Oktober 2015 hingga Oktober 2020 menggunakan pedoman pelaporan PRISMA. Penelusuran artikel melalui Cochrane, PUBMED, EBSCO, Science Direct, dan pencarian hand searching. Dari 13 jurnal, terpilih 3 jurnal sesuai kriteria inklusi dan eksklusi yang kemudian dilakukan penilaian. Seluruh penelitian menunjukkan perbaikan fungsi kognitif signifikan pada skor MMSE, MoCA, dan ADAS-Cog. Pita elastis kekuatan rendah (HSPT/highspeed power training) lebih efektif dibanding pita elastis kekuatan tinggi (LSST/low-speed power training), dan latihan yang meningkatkan kekuatan ekstremitas inferior lebih efektif memperbaiki domain kognitif dibanding latihan pada ekstremitas superior, serta terjadi perlambatan volume hipokampus hingga 12 bulan walaupun intervensi telah dihentikan. RT pada pasien MCI dengan jenis HSPT yang berfokus pada kekuatan otot ekstremitas bawah efektif meningkatkan fungsi kognitif dan dapat memperlambat penurunan volume hipokampus hingga satu tahun pascalatihan.


Keywords


resistance training; mild cognitive impairment; MCI; cognitive function



References

Petersen RC, Oscar L, Melissa JA, Thomas SDG, Mary G, David G, et al. Practice guideline update summary: Mild cognitive impairment. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. J of Neurology. 2018;Vol 90:126-135.

Zheng G, Huang M, Li S, Li M, Xia R, Zhou W, et al. Effect of Baduanjin exercise on cognitive function in older adults with mild cognitive impairment: study protocol for a randomised controlled trial. BMJ open. 2016;6(4):e010602.

Untari I, Subijanto AA, Mirawati DK, Probandari AN, Sanusi R. A combination of cognitive training and physical exercise for elderly with the mild cognitive impairment: A systematic review. Journal of Health Research. 2019;33(6):504-516.

Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. Journal of Aging Research. 2013;2013:1–10.

Davis JC, Bryan S, Marra CA, Sharma D, Chan A, Beattie BL, et al. An economic evaluation of resistance training and aerobic training versus balance and toning exercises in older adults with mild cognitive impairment. PLoS ONE. 2013;8(5): e63031.

Yoon DH, Kang D, Kim HJ, Kim JS, Song HS, Song W. Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with mild cognitive impairment. Geriatrics & gerontology international. 2017;17(5):765-772.

Mavros Y, Gates N, Wilson GC, Jain N, Meiklejohn J, Brodaty H, et al. Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: outcomes of the study of mental and resistance training. Journal of the American Geriatrics Society. 2017;65(3):550-559.

Broadhouse KM, Singh MF, Suo C, Gates N, Wen W. Hippocampal Plasticity Underpins Long-Term Cognitive Gains from Resistance Exercise in MCI. NeuroImage: Clinical Journal. 2020;25:102-182.

Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, ValcarcelAres NM, et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14(6):1034-1044.

Leckie RL, Oberlin LE, Voss MW, Prakash RS, Szabo-Reed A, Chaddock-Heyman L, et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Frontiers in Human Neuroscience. 2014;8:985.

Gómez-Pinilla F, Feng C. Molecular Mechanisms for the Ability of Exercise Supporting Cognitive Abilities and Counteracting Neurological Disorders. In: Boecker H, Hillman CH, Scheef L, Strüder HK, editor. Functional Neuroimaging in Exercise and Sport Sciences. New York, NY: Springer New York; 2012. pp 25–43.

Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Frontiers in Neuroscience. 2018;12:52.13. Pedersen BK, Akerström TC, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. Journal of Applied Physiology. 2007;103(3):1093–8.

Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism. 2013;18(5):649-659.

Geerlings MI, Sigurdsson S, Eiriksdottir G, Garcia ME, Harris TB, Gudnason V, et al. Salivary cortisol, brain volumes, and cognition in community-dwelling elderly without dementia. Neurology. 2015;85(11):976-983.

Lupien SJ, De Leon M, De Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience. 1998;1(1):69-73.

Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. New England journal of medicine. 2002;346(7):476-483.

Vincent KR, Braith RW, Bottiglieri T, Vincent HK, Lowenthal DT. Homocysteine and lipoprotein levels following resistance training in older adults. Preventive Cardiology. 2003;6(4):97-203.

Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et al. The metabolic syndrome, inflammation, and risk of
cognitive decline. JAMA. 2004;292(18):2237-2242.20. Raji MA, Kuo YF, Snih SA, Markides KS, Kristen-Peek M, Ottenbacher KJ. Cognitive status, muscle strength, and subsequent disability in older Mexican Americans. Journal of the American Geriatrics Society. 2005;53(9):1462-1468.

American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Philadelphia (PA): J. Lippincott, Williams & Wilkins; 2010.

Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions?. European Journal of Sport Science. 2019;19(1):71-85.

Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus 1. 2009;11;1055–1064.

Maruszak A, Thuret S. Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer’s disease diagnosis. Frontiers in Cellular Neuroscience. 2014; 8;90-95.



DOI: https://doi.org/10.22146/bns.v20i1.103667

Article Metrics

Abstract views : 17 | views : 1

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Berkala NeuroSains

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.