EEG sebagai alat bantu diagnosis pada ensefalopati sepsis

https://doi.org/10.22146/bns.v20i3.106527

Luhur Budi Adhiapto(1*), Indarwati Setyaningsih(2), Ahmad Asmedi(3)

(1) SMF Saraf RSA RSUD Kardinah, Kota Tegal, Jawa Tengah
(2) Departemen Neurologi Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta/RSUP Dr. Sardjito
(3) Departemen Neurologi Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta/RSUP Dr. Sardjito
(*) Corresponding Author

Abstract


Sepsis-associated encephalopathy is a diffuse cerebral dysfunction resulting from a systemic inflammatory response to sepsis. Diagnosing sepsis-associated encephalopathy remains challenging because existing examination methods, such as clinical profiles, laboratory biomarkers, and head computed tomography (CT) or magnetic resonance imaging (MRI), have debatable sensitivity and specificity. Several EEG patterns in sepsis-associated encephalopathy include background rhythm slowing (theta and delta), burst suppression, triphasic waves, and periodic epileptiform discharges (PEDs). Electroencephalogram (EEG) has proven to have high sensitivity in detecting sepsis-associated encephalopathy from an early stage, even when neurological examination does not show significant abnormalities. EEG examination is a non-invasive method that is easy, inexpensive, and more widely available than other methods. Nevertheless, EEG cannot be used as a single diagnostic tool and needs to be combined with clinical parameters, laboratory biomarkers, and brain imaging to obtain accurate diagnosis.

 

ABSTRAK

Ensefalopati sepsis merupakan disfungsi serebral difus akibat respons inflamasi sistemik terhadap kondisi sepsis. Diagnosis ensefalopati sepsis masih menjadi tantangan karena metode pemeriksaan yang ada, seperti profil klinis, biomarker laboratorium, serta pencitraan computed tomography-scan (CT-scan) atau magnetic resonance imaging (MRI) kepala, memiliki sensitivitas dan spesifisitas yang masih diperdebatkan. Beberapa pola electroencephalogram (EEG) pada ensefalopati sepsis meliputi perlambatan irama dasar (theta dan delta), burst suppression, gelombang trifasik, serta periodic epileptiform discharges (PEDs). EEG terbukti memiliki sensitivitas tinggi dalam mendeteksi ensefalopati sepsis sejak tahap awal, bahkan ketika pemeriksaan neurologis belum menunjukkan abnormalitas signifikan. Pemeriksaan EEG merupakan metode noninvasif yang mudah, murah, serta lebih banyak tersedia dibandingkan metode lainnya. Meskipun demikian, EEG tidak dapat digunakan sebagai alat diagnostik tunggal dan perlu dikombinasikan dengan parameter klinis, biomarker laboratorium, serta pencitraan otak untuk mendapatkan diagnosis yang lebih akurat.


Keywords


EEG; sepsis-associated encephalopathy; diagnosis



References

Hosokawa K, Gaspard N, Su F, Oddo M, Vincent JL, Taccone FS. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: a systematic review. Critical care. 2014 Dec;18:1-2.

Dai W, Ai B, He W, Liu Z, Liu H. Metabolic Encephalopathy. In: Liu H, Zhang X, editor. Pediatric Neuroimaging. Singapore: Springer; c2022. pp. 139–179.

Erkkinen MG, Berkowitz AL. A clinical approach to diagnosing encephalopathy. The American Journal of Medicine. 2019 Oct 1;132(10):1142-7.


Chaudhry N, Duggal AK. Sepsis associated encephalopathy. Advances in medicine. 2014;2014(1):762320.
Rivera MJ, Teruel MA, Mate A, Trujillo J. Diagnosis and prognosis of mental disorders by means of EEG and deep learning: a systematic mapping study. Artificial Intelligence Review. 2022 Feb 1:1-43.

Mizuguchi M, Ichiyama T, Imataka G, Okumura A, Goto T, Sakuma H, et al. Guidelines for the diagnosis and treatment of acute encephalopathy in childhood. Brain and Development. 2021 Jan 1;43(1):2-31.
Piva S, McCreadie V, Latronico N. Neuroinflammation in sepsis: sepsis associated delirium. Cardiovascular & Haematological Disorders-Drug Targets. 2015 Mar 1;15(1):10-8.

Young GB. Encephalopathy of infection and systemic inflammation. Journal of Clinical Neurophysiology. 2013 Oct 1;30(5):454-61.

Angus DC, Van der Poll T. Severe sepsis and septic shock. New England journal of medicine. 2013 Aug 29;369(9):840-51.

Remick DG. Pathophysiology of sepsis. The American journal of pathology. 2007 May 1;170(5):1435-44.

Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Molecular Medicine. 2023 Feb 23;29(1):27.

Stubbs DJ, Yamamoto AK, Menon DK. Imaging in sepsis-associated encephalopathy—insights and opportunities. Nature Reviews Neurology. 2013 Oct;9(10):551-61.

Suchyta MR, Jephson A, Hopkins RO. Neurologic changes during critical illness: brain imaging findings and neurobehavioral outcomes. Brain Imaging and Behavior. 2010 Mar;4(1):22-34.

Orhun G, Esen F, Özcan PE, Sencer S, Bilgiç B, Ulusoy C, et al. Neuroimaging findings in sepsis-induced brain dysfunction: association with clinical and laboratory findings. Neurocritical Care. 2019 Feb 15;30:106-17.

Sutter R, Stevens RD, Kaplan PW. Significance of triphasic waves in patients with acute encephalopathy: a nine-year cohort study. Clinical Neurophysiology. 2013 Oct 1;124(10):1952-8.

Rayi A, M.K., 2023. Encephalopathic EEG Patterns [WWW Document]. StatPearls [Internet]. Treasure Isl. URL https://www.ncbi.nlm.nih.gov/books/NBK564371/

Yildirim M, Konuskan B, Yalnizoglu D, Topaloglu H, Erol I, Anlar B. Electroencephalographic findings in anti-N-methyl-d-aspartate receptor encephalitis in children: a series of 12 patients. Epilepsy & Behavior. 2018 Jan 1;78:118-23.

Palanca BJ, Wildes TS, Ju YS, Ching S, Avidan MS. Electroencephalography and delirium in the postoperative period. BJA: British Journal of Anaesthesia. 2017 Aug 1;119(2):294-307.


Boulanger JM, Deacon C, Lécuyer D, Gosselin S, Reiher J. Triphasic waves versus nonconvulsive status epilepticus: EEG distinction. Canadian journal of neurological sciences. 2006 Jul;33(2):175-80.

Gilmore EJ, Gaspard N, Choi HA, Cohen E, Burkart KM, Chong DH, Claassen J, Hirsch LJ. Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive care medicine. 2015 Apr;41:686-94.

Emmady, P.D., Murr, N.I., 2023. EEG Triphasic Waves. StatPearls.

Hirsch LJ, Brenner RP, Drislane FW, So E, Kaplan PW, Jordan KG, et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. Journal of clinical neurophysiology. 2005 Apr 1;22(2):128-35.

Søholm H, Kjær TW, Kjaergaard J, Cronberg T, Bro-Jeppesen J, Lippert FK, et al. Prognostic value of electroencephalography (EEG) after out-of-hospital cardiac arrest in successfully resuscitated patients used in daily clinical practice. Resuscitation. 2014 Nov 1;85(11):1580-5.

Li Y, Hadden C, Cooper A, Ahmed A, Wu H, Lupashin VV, et al. RETRACTED ARTICLE: Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability. Scientific reports. 2016 Mar 9;6(1):22747.

Ferlini L, Maenhout C, Crippa IA, Quispe-Cornejo AA, Creteur J, Taccone FS, et al. The association between the presence and burden of periodic discharges and outcome in septic patients: an observational prospective study. Critical Care. 2023 May 9;27(1):179.

Riker RR, Fugate JE, Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring. Clinical monitoring scales in acute brain injury: assessment of coma, pain, agitation, and delirium. Neurocritical care. 2014 Dec;21(Suppl 2):27-37.

Shanker A, Abel JH, Schamberg G, Brown EN. Etiology of burst suppression EEG patterns. Frontiers in Psychology. 2021 Jun 10;12:673529.

Milani P, Malissin I, Tran-Dinh YR, Deye N, Baud F, Levy BI, Kubis N. Prognostic EEG patterns in patients resuscitated from cardiac arrest with particular focus on Generalized Periodic Epileptiform Discharges (GPEDs). Neurophysiologie Clinique/Clinical Neurophysiology. 2014 Apr 1;44(2):153-64.

Kural MA, Fabricius M, Christensen J, Kaplan PW, Beniczky S. Triphasic waves are generated by widespread bilateral cortical networks. Journal of Clinical Neurophysiology. 2021 Sep 1;38(5):415-9.

Sandroni C, D’Arrigo S, Cacciola S, Hoedemaekers CW, Kamps MJ, Oddo M, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive care medicine. 2020 Oct;46:1803-51.

Pantzaris ND, Platanaki C, Tsiotsios K, Koniari I, Velissaris D. The use of electroencephalography in patients with sepsis: a review of the literature. Journal of translational internal medicine. 2021 Jan 5;9(1):12-6.

Permana YN, Putranti AH, Setiawan H. Faktor-faktor yang Memengaruhi Gambaran Elektroensefalografi Interiktal Anak yang Menderita Epilepsi. Sari Pediatri. 2020 Jun 24;22(1):13-7.

Khakim Z, Kusrohmaniah S. Dasar-Dasar Electroencephalography (EEG) bagi Riset Psikologi. Buletin Psikologi. 2021 Jun;29(1):92-115.

Crippa IA, Subirà C, Vincent JL, Fernandez RF, Hernandez SC, Cavicchi FZ, Creteur J, Taccone FS. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Critical Care. 2018 Dec 4;22(1):327.



DOI: https://doi.org/10.22146/bns.v20i3.106527

Article Metrics

Abstract views : 103 | views : 49

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Berkala NeuroSains

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.