Patofisiologi normal pressure hydrocephalus

https://doi.org/10.22146/bns.v19i1.61894

Rina Marlina Hakiem(1*), Abdul Gofir(2), Sekar Satiti(3)

(1) KSM Saraf, RS PKU Muhammadiyah Mayong Jepara, Jawa Tengah
(2) Departemen Neurologi, Fakultas Kedokteran-Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada, Yogyakarta
(3) Departemen Neurologi, Fakultas Kedokteran-Kesehatan Masyarakat dan Keperawatan Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Normal pressure hydrocephalus (NPH) is a condition in which excess cerebrospinal fluid (CSF) occurs in the ventricles, and with normal or slightly elevated cerebrospinal fluid pressure. The prevalence of NPH increases with age. The disease presents in a classic triad of symptoms, which are urinary incontinence, dementia, and gait deviations. NPH is classified into idiopathic NPH (INPH) and secondary NPH (SNPH).

There are several theories proposed as the pathophysiological mechanisms of INPH, SNPH, the pressure that remains normal in the widened ventricle and the mechanism of classical symptoms triad. This literature review aims to explore the pathophysiological aspect of NPH in order to assist neurologist to perform a comprehensive management of NPH.

 

ABSTRAK

 

Normal pressure hydrocephalus (NPH) adalah hidrosefalus yang tidak menyebabkan peningkatan tekanan intrakranial. Prevalensi NPH meningkat seiring dengan bertambahnya usia. NPH dapat terjadi dengan berbagai kombinasi atau derajat dari masing-masing elemen trias klinis klasik berupa gangguan cara berjalan, inkontinensia urin dan demensia. NPH diklasifikasikan menjadi NPH idiopatik (INPH) dan NPH sekunder (SNPH).

Terdapat beberapa teori yang diajukan sebagai mekanisme patofisiologi terjadinya INPH, SNPH, tekanan yang tetap normal pada ventrikel yang melebar serta mekanisme terjadinya trias gejala klasik. Tujuan penulisan tinjauan pustaka ini adalah untuk mengkaji literatur tentang patofisiologi NPH sehingga dapat memberikan tambahan pengetahuan bagi para klinisi untuk membantu penanganan NPH secara komprehensif.


Keywords


normal pressure hydrocephalus;pathophysiology;classical symptoms triad

Full Text:

PDF


References

Marmarou A, Young HF, Aygok GA. Estimated incidence of normal-pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. Neurosurgical Focus. 2007;22(4):1-8.

Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure: observations on cerebrospinal fluid hydrodynamics. Journal of The Neurological Sciences. 1965;2(4):307-327.

Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurologia Medico-Chirurgica. 2012;52(11):775-809.

Siraj S. An overview of normal pressure hydrocephalus and its importance: how much do we really know?. Journal of the American Medical Directors Association. 2011;12(1):19-21.

Oliveira LM, Nitrini R, Román GC. Normal-pressure hydrocephalus: A critical review. Dementia & Neuropsychologia. 2019;13(2):133-143.

Martín-Láez R, Caballero-Arzapalo H, López-Menéndez LÁ, Arango-Lasprilla JC, Vázquez-Barquero A. Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature. World Neurosurgery. 2015;84(6):2002-2009.

Kiefer M, Unterberg A. The differential diagnosis and treatment of normal-pressure hydrocephalus. Deutsches Ärzteblatt International. 2012;109(1-2):15-26.

Nassar BR, Lippa CF. Idiopathic normal pressure hydrocephalus: a review for general practitioners. Gerontology and Geriatric Medicine. 2016;2:2333721416643702.

Kirollos R, Helmy A, Thomson S, Hutchinson P, penyunting. Oxford Textbook of Neurological Surgery. Oxford University Press; 2019.

Levy MN, Berne RM, Koeppen BM, Stanton BA, penyunting. Berne & Levy principles of physiology. 4th ed. Philadelphia, PA: Elsevier Mosby; 2006.

Enzmann DR, Pelc NJ. Cerebrospinal fluid flow measured by phase-contrast cine MR. American Journal of Neuroradiology. 1993;14(6):1301-1307.

Qvarlander S, Malm J, Eklund A. The pulsatility curve—the relationship between mean intracranial pressure and pulsation amplitude. Physiological Measurement. 2010;31(11):1517-1528.

Bateman GA. Vascular compliance in normal pressure hydrocephalus. American Journal of Neuroradiology. 2000;21(9):1574-1585.

Hamlat A, And M, Sid-ahmed S, Askar B, Pasqualini E. Theoretical considerations on the pathophysiology of normal pressure hydrocephalus (NPH) and NPH-related dementia. Medical Hypotheses. 2006;67(1):115–123.

Bateman GA, Siddique SH. Cerebrospinal fluid absorption block at the vertex in chronic hydrocephalus: obstructed arachnoid granulations or elevated venous pressure?. Fluids and Barriers of the CNS. 2014;11(1):11.

Pyykkö OT, Lumela M, Rummukainen J, Nerg O, Seppälä TT, Herukka SK, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PloS one. 2014;9(3):e91974.

Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Medicine. 2013;11(1):142.

Kim DS, Choi JU, Huh R, Yun PH, Kim DI. Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child's Nervous System. 1999;15(9):461-467.

Castro ME, Portnoy HD, Maesaka J. Elevated cortical venous pressure in hydrocephalus. Neurosurgery. 1991;29(2):232–238.

Portnoy HD, Branch C, Castro ME. The relationship of intracranial venous pressure to hydrocephalus. Child's Nervous System. 1994;10(1):29-35.

Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiolica. Supplementum. 1993;386:1–23.

Fujimoto A, Matsumura A, Maruno T, Yasuda S, Yamamoto M, Nose T. Normal pressure hydrocephalus after gamma knife radiosurgery for cerebellopontine angle meningioma. Journal of Clinical Neuroscience. 2004;11(7):785-786.

Katayama S, Asari S, Ohmoto T. Quantitative measurement of normal and hydrocephalic cerebrospinal fluid flow using phase contrast cine MR imaging. Acta Medica Okayama. 1993;47(3):157–168.

Traczewski W, Moskala M, Kruk D, Goscinski I, Szwabowska D, Polak J, et al. The role of computerized rheoencephalography in the assessment of normal pressure hydrocephalus. Journal of Neurotrauma. 2005;22(7):836-843.

Roohi F, Mann D, Kula RW. Surgical management of hydrocephalic dementia in Paget’s disease of bone: the 6-year outcome of ventriculo-peritoneal shunting. Clinical Neurology and Neurosurgery. 2005;107(4):325-328.

Bech RA, Juhler M, Waldemar G, Klinken L, Gjerris F. Frontal brain and leptomeningeal biopsy specimens correlated with cerebrospinal fluid out flow resistance and Bwave activity in patients suspected of normal-pressure hydrocephalus. Neurosurgery. 1997;40(3):497-502.

Levine DN. The pathogenesis of normal pressure hydrocephalus: a theoretical analysis. Bulletin of Mathematical Biology. 1999;61(5):875–916.

Owler BK, Pena A, Momjian S, Czosnyka Z, Czosnyka M, Harris NG, et al. Changes in cerebral blood flow during cerebrospinal fluid pressure manipulation in patients with normal pressure hydrocephalus: a methodological study. Journal of Cerebral Blood Flow & Metabolism. 2004;24(5):579–587.

Bradley WG. Cerebrospinal fluid dynamics and shunt responsiveness in patients with normal-pressure hydrocephalus. Mayo Clinic Proceedings. 2002;77(6):507–508.

Ali MA, Carroll KT, Rennert RC, Hamelin T, Chang L, Lemkuil BP, et al. Stereotactic laser ablation as treatment for brain metastases that recur after stereotactic radiosurgery: a multiinstitutional experience. Neurosurgical Focus. 2016;41(4):E11.

Chang CC, Asada H, Mimura T, Suzuki S. A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. Journal of Neurosurgery. 2009;111(3):610-617.

Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics?. American Journal of Neuroradiology. 2008;29(1):198-203.

Penar PL, Lakin WD, Yu J. Normal pressure hydrocephalus: an analysis of etiology and response to shunting based on mathematical modeling. Neurological Research. 1995;17(2):83–88.

Nakayama T, Ouchi Y, Yoshikawa E, Sugihara G, Torizuka T, Tanaka K. Striatal D2 receptor availability after shunting in idiopathic normal pressure hydrocephalus. Journal of Nuclear Medicine. 2007;48(12):1981-1986.

Mocco J, Tomey MI, Komotar RJ, Mack WJ, Frucht SJ, Goodman RR. et al. Ventriculoperitoneal shunting of idiopathic normal pressure hydrocephalus increases midbrain size: a potential mechanism for gait improvement. Neurosurgery. 2006;59(4): 847-851.

Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmie S, et al. Gait analysis in idiopathic normal pressure hydrocephalus–which parameters respond to the CSF tap test?. Clinical Neurophysiology. 2000;111(9):1678-1686.

Hoza D, Vlasák A, Hořínek D, Sameš M, Alfieri A. DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurgical Review. 2015;38(2):239–244.

Curran T, Lang AE. Parkinsonian syndromes associated with hydrocephalus: case reports, a review of the literature, and pathophysiological hypotheses. Movement Disorder. 1994;9(5):508–520.

Bugalhoa P, Guimaraes J. Gait disturbance in normal pressure hydrocephalus: A clinical study. Parkinsonism and Related Disorders. 2007;13(7):434–437.

Kanno S, Abe N, Saito M, Takagi M, Nishio Y, Hayashi A, et al. White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study. Journal of Neurology. 2011;258(11):1949–1957.

Nakamizo A, Inamura T, Inoha S, Kuba H, Amano T, Sasaki M, et al. Occurrence of subdural hematoma and resolution of gait disturbance in a patient treated with shunting for normal pressure hydrocephalus. Clinical Neurology and Neurosurgery. 2002;104(4):315–317.

Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127(5):965-972.

De Groat WC. Integrative control of the lower urinary tract: preclinical perspective. British Journal of Pharmacology. 2006;147(S2):S25-S40.

Blok BFM, Holstege G. Direct projection from periaqueductal gray to the pontine micturition center (M-region): an anterograde and retrograde tracing study in the cat. Neuroscience Letters. 1994;166(1): 93-96.

Sasaki H, Ishii K, Kono A, Miyamoto N, Fukuda T, Shimada K, et al. Cerebral perfusion pattern of idiopathic normal pressure hydrocephalus studied by SPECT and statistical brain mapping. Annals of Nuclear Medicine. 2007;21(1):39-45.

Ouchi Y, Nakayama T, Kanno T, Yoshikawa E, Shinke T, Torizuka T. In vivo presynaptic and postsynaptic striatal dopamine function in idiopathic normal pressure hydrocephalus. Journal of Cerebral Blood Flow & Metabolism. 2007;27(4): 803-810.

Sakakibara R, Kanda T, Sekido T, Uchiyama T, Awa Y, Ito T, et al. Mechanism of bladder dysfunction in idiopathic normal pressure hydrocephalus. Neurology and Urodynamic. 2008;27(6):507-510.

Golomb G, Wisoff J, Miller DC, Boksayd I, Klugerd A, Weinerb H, et al. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. Journal of Neurology, Neurosurgery & Psychiatry. 2000;68(6):778-781.



DOI: https://doi.org/10.22146/bns.v19i1.61894

Article Metrics

Abstract views : 5135 | views : 11795

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Berkala NeuroSains

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.