Amylolytic ability of bacteria isolated from termite (Coptotermes sp.) gut

https://doi.org/10.22146/ijbiotech.32445

Putri Dwi Mulyani(1), Radhiyah Mardhiyah Hamid(2), Rifqi Zahroh Janatunaim(3), Yekti Asih Purwestri(4*)

(1) Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


BSR 2, BSR 3, BSR 8, and BSR 9, different bacteria isolated from the termite gut, have been shown to possess cellulolytic activities, but their amylolytic ability has heretofore been unknown. This study attempted to fill in this knowledge gap. The formation of a clear zone using the iodine test showed that the bacteria were able to produce and secrete amylase. Based on the results, the best cultivation times for strains BSR 2, BSR 3, BSR 8, and BSR 9 were 6, 3, 2, and 2 d, respectively, yielding amylase activities of 2.59 ± 0.13 U/mg, 2.00 ± 0.08 U/mg, 1.67 ± 0.10 U/mg, and 1.55 ± 0.12 U/mg, respectively. BSR 2 had the highest amylase activity compared with the other bacterial isolates. The optimum ph for bacterial amylase activity of BSR 2 was 7.0, and the optimum temperature was 40°C. The molecular characterization of isolates BSR 2, BSR 3, BSR 8, and BSR 9 was based on 16S rRNA gene sequences. Isolates BSR 8 and BSR 9 were thus identified as Brevibacillus parabrevis and Brevibacillus sp. With similarities amounting to 92.48% and 95.91%, while the BSR 3 isolate was identified as Pseudomonas alcaligenes with a similarity of 94.29%, and the BSR 2 isolate could not be identified yet.


Keywords


16 rRNA gene; amylase; amylolytic bacteria; termite gut

Full Text:

Mulyani et al.


References

Abdel-Fattah YR, Soliman NA, El-Toukhy NM, El-Gendi H, Ahmed RS. 2013. Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20. Journal of Chemistry. 2013:1–11. doi:10.1155/2013/673173.

Alariya SS, Sethi S, Gupta S, Lal GB. 2013. Amylase activity of a starch degrading bacteria isolated from soil. Archives of Applied Science Research. 5:15–24.

Baker JE. 1983. Properties of amylases from midguts of larvae of Sitophilus zeamais and Sitophilus granarius. Insect Biochemistry. 13:421–428. doi:10.1016/0020-1790(83)90026-4.

Bisswanger H. 2004. Practical enzymology. Wiley-VCH.

Cornelis P, editor. 2008. Pseudomonas: genomics and molecular biology. Norfolk, U.K: Caister Academic Press.

Ferbiyanto A, Rusmana I, Raffiudin R. 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI Journal of Biosciences. 22:197–200. doi:10.1016/j.hjb.2015.07.001.

Gaman P, Sherrington K. 1994. Ilmu pangan: pengantar ilmu pangan, nutrisi dan mikrobiologi [The science of food]. Kasmidjo R, editor; Gardjito M, translator. Yogyakarta: Gadjah Mada University Press.

Gebreselema G. 2015. Isolation and optimization of amylase producing bacteria and actinomycetes from soil samples of Maraki and Tewedros campus, University of Gondar, North West Ethiopia. African Journal of Microbiology Research. 9:1877–1882. doi:10.5897/AJMR2014.7027.

Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M. 2008. Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1: Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochemistry. 43:499–510. doi:10.1016/j.procbio.2008.01.017.

Janatunaim R, Wijaya C, Ridha Azizah A, Ramadhani E, Priyambada F, Purwestri YA. 2015. Characterization of cellulase in the cellulolytic bacteria of termites (order: Isoptera) as composting accelerator agensia.Hokkaido: The 12th Hokkaido Indonesian Student Association Scientific Meeting (HISAS 12). [In Bahasa Indonesia].

Mishra S, Behera N. 2008. Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. African Journal of Biotechnology. 7:3326–3331.

Naiola E. 2001. Karakterisasi amilase dari isolat bakteri yang berasal dari Bali dan Lombok [Characterization of amylase from bacteria isolates originated from Bali and Lombok]. Jurnal Biologi Indonesia. 3:32–42.

Poedjiadi A. 1994. Dasar-dasar Biokimia [Fundamentals of Biochemistry]. Jakarta: UI Press.

Pujawati S. 2012. Karakterisasi dan identifikasi bakteri termofilik pasca erupsi Merapi sebagai penghasil enzim amilase [characterization and identification of Mt. Merapi post-eruption thermophilic bacteria as an amylase enzyme producer] [Bachelor thesis]. [Yogyakarta]: Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta.

Reddy NS, Nimmagadda A, Rao KS. 2003. An overview of the microbial α-amylase family. African Journal of Biotechnology. 2:645–648.

Silaban R. 1999. Enzim selulolitik pada bakteri Pseudomonas alcaligenes paAf 18 [Cellulolytic enzymes in Pseudomonas alcaligenes paAf 18] [Master’s thesis]. [Bandung]: Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung.

Soeka YS. 2015. Kemampuan Bacillus licheniformis dalam menghasilkan enzim α-amilase [Bacillus licheniformis ability in producing α-amylase enzyme]. Vol. 1. (5). p. 1162–1166.

Terra WR, Ferreira C, Jordão BP, Dillon RJ. 1996. Digestive enzymes. In: Lehane M, Billingsley PF, editors. Biology of the Insect Midgut. London: Chapman & Hall. p. 153–194.

Thomas P. 2006. Isolation of an ethanol-tolerant endospore-forming Gram-negative Brevibacillus sp. as a covert contaminant in grape tissue cultures. Journal of Applied Microbiology. 101:764–774. doi:10.1111/j.1365-2672.2006.02993.x.

Vihinen M, Mantsiila P. 1989. Microbial amylolytic enzyme. Critical Reviews in Biochemistry and Molecular Biology. 24:329–418. doi:10.3109/10409238909082556.

Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W, editors. 2009. Bergey’s manual of systematic bacteriology: volume 3: the Firmicutes. 2nd ed. New York: Springer-Verlag.

Waites MJ, Morgan NL, Rockey JS, Higton G. 2001. Industrial microbiology: an introduction. Oxford: Blackwell Science.

Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H. 2002. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology. 92:32–40.



DOI: https://doi.org/10.22146/ijbiotech.32445

Article Metrics

Abstract views : 4314 | views : 3262

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.