Unfolded protein response in rice (Oryza sativa L.) varieties with different level of salt stress tolerance
Galang Rizki Ramadhan(1), Sholeh Avivi(2), Bambang Sugiharto(3), Wahyu Indra Duwi Fanata(4*)
(1) Department of Biotechnology Graduate School Program University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia; Center for Development of Advanced Science and Technology (CDAST) University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia
(2) Department of Agrotechnology Faculty of Agriculture University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia; Center for Development of Advanced Science and Technology (CDAST) University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia
(3) Department of Biology Faculty of Mathematic and Natural Science University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia; Center for Development of Advanced Science and Technology (CDAST) University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia
(4) Department of Agrotechnology Faculty of Agriculture University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia; Center for Development of Advanced Science and Technology (CDAST) University of Jember, Jl. Kalimantan Tegalboto, Jember, Jawa Timur 68121, Indonesia
(*) Corresponding Author
Abstract
Plants activate the unfolded protein response as part of cellular adaptation, thereby maintaining the endoplasmic reticulum homeostasis during external stresses exposure. In this study, we examined the relationship between the degree of salt tolerance and unfolded protein response-related gene expression in India salt-tolerant Pokkali and INPARI 35 varieties compared to the Indica salt-sensitive counterpart IR64 and INPARI 4 varieties. Our result showed that the salt tolerance of Pokkali and INPARI 35 had been confirmed by their higher survival rate, higher chlorophyll content, lower electrolyte leakage, and lower H2O2 and malondialdehyde content under salt stress conditions. Furthermore, the expression of unfolded protein response genes was highest in INPARI 35, whereas IR64 and INPARI 4 exhibited low gene induction during endoplasmic reticulum stress conditions. Among the four examined varieties the salt tolerant Pokkali surprisingly showed the lowest induction of all examined unfolded protein response-related genes. These results indicated the possibility that unfolded protein response supports the rice plant for adapting to the saline environment.
Keywords
Full Text:
PDFReferences
Abdelgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W. 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci. 7(MAR2016):1– 11. doi:10.3389/fpls.2016.00276.
Arnon DI. 2018. Plant physiology. In: Encyclopedia of Ecology, volume 24. p. 549–557. doi:10.1016/B978 0124095489.111303.
do Amaral MN, Arge LWP, Auler PA, Rossatto T, Milech C, de Magalhães AM, Braga EJB. 2020. Longterm transcriptional memory in rice plants submitted to salt shock. Planta 251(6):1–16. doi:10.1007/s00425020 03397z.
Fanata WID, Lee SY, Lee KO. 2013. The unfolded protein response in plants: A fundamental adaptive cellular response to internal and external stresses. J Proteomics. 93:356–368. doi:10.1016/j.jprot.2013.04.023.
Hoang TM, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG. 2015. Development of salinity tolerance in rice by constitutiveoverexpression of genes involved in the regulation of programmed cell death. Front Plant Sci. 6(March):1–14. doi:10.3389/fpls.2015.00175.
Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S. 2016. Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy. 6(4). doi:10.3390/agronomy6040054.
Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acidreactivesubstances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207(4):604–611. doi:10.1007/s004250050524.
Kumari R, Kumar P, Sharma VK, Kumar H. 2018. Evaluation of Salinity Tolerance of Rice Varieties through in vitro Seed Germination and Seedling Growth. Int J Curr Microbiol Appl Sci. (7):2648–2659.
Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM. 2013. Salinityinduced calcium signaling and root adaptation in arabidopsis require the calcium regulatory protein annexin1. Plant Physiol. 163(1):253–262. doi:10.1104/pp.113.217810.
Liu JX, Howell SH. 2016. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 211(2):418–428. doi:10.1111/nph.13915.
Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, Liu JX. 2012. Conservation of IRE1regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol Plant. 5(2):504– 514. doi:10.1093/mp/ssr115.
Ma NL, Che Lah WA, Kadir NA, Mustaqim M, Rahmat Z, Ahmad A, Lam SD, Ismail MR. 2018. Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS ONE. 13(2):1–17. doi:10.1371/journal.pone.0192732.
Qian D, Tian L, Qu L. 2015. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep. 5:1–15. doi:10.1038/srep14255. Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. 2019. Regulation of K + nutrition in plants. Front Plant Sci. 10(March). doi:10.3389/fpls.2019.00281.
Rahman MA, Thomson MJ, ShahEAlam M, De Ocampo M, Egdane J, Ismail AM. 2016. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Ann Bot. 117(6):1083–1097. doi:10.1093/aob/mcw030.
Solangi SB, Chachar Q, Chachar S, Solangi AB, Solangi JA, Solangi B. 2016. Effect of salinity (NaCl) stress on physiological characteristics of rice (Oryza sativa L.) at early seedling stage. J Agric Technol. 12(2):263–279.
Takahashi H, Kawakatsu T, Wakasa Y, Hayashi S,Takaiwa F. 2012. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response. Plant Cell Physiol. 53(1):144–153. doi:10.1093/pcp/pcr157.
Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K. 2019. Overexpression of a myb family gene, Osmyb6, increases drought and salinity stress tolerance in transgenic rice. Fronti Plant Sci. doi:10.3389/fpls.2019.00168.
Ueda A, Yahagi H, Fujikawa Y, Nagaoka T, Esaka M, Calcaño M, González MM, Hernández Martich JD, Saneoka H. 2013. Comparative physiological analysis of salinity tolerance in rice. Soil Sci Plant Nutr. 59(6):896–903. doi:10.1080/00380768.2013.842883.
Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid raintreated bean plants protective role of exogenous polyamines. Plant Sci. 151(1):59–66. doi:10.1016/S01689452(99)001971.
Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F. 2011. Expression of er quality controlrelated genes in response to changes in BiP1 levels in developing rice endosperm. Plant J. 65(5):675–689. doi:10.1111/j.1365313X.2010.04453.x.
Xiang Y, Hai Lu Y, Song M, Wang Y, Xu W, Wu L, Wang H, Ma Z. 2015. Overexpression of a triticum aestivum calreticulin gene (TaCRT1) improves salinity tolerance in tobacco. PLoS ONE. doi:10.1371/journal.pone.0140591.
Ya’acob NMA, Ismail M, Medina, Talarico TL, Casas IA, Chung TC, Dobrogosz WJ, Axelsson L, Lindgren SE, Dobrogosz WJ, et al. 2017. Salt Stress Tolerance in Rice: Emerging Role of Exogenous Phytoprotectants. Intech. 32:137–144.
DOI: https://doi.org/10.22146/ijbiotech.67039
Article Metrics
Abstract views : 2183 | views : 2505Refbacks
- There are currently no refbacks.
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.