Evaluation of the patchouli essential oil (Pogostemon cablin Benth.) aromatic characteristic by near‐infrared spectroscopy
Diego Mauricio Cano-Reinoso(1), Yohanes Aris Purwanto(2*), I Wayan Budiastra(3), Shinichiro Kuroki(4), Sutrisno Sutrisno(5), Slamet Widodo(6)
(1) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(2) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(3) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(4) Graduate School of Agricultural Science, Kobe University, 1‐1 Rokkodai‐cho, Nada‐ku, 657‐8501, Kobe, Japan
(5) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(6) Department of Mechanical and Biosystem Engineering, IPB University, 16680, Dramaga, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Burns DA, Ciurczak EW. 2002. Handbook of NearInfrared Analysis. USA: CRC Press. doi:10.1201/9781003042204.
CanoReinoso DM. 2018. Evaluation of the quality of patchouli aromatic oil (Pogostemon cablin Benth.) by nearinfrared spectroscopy. Ph.D. thesis, IPB University, Bogor.
CanoReinoso DM, Purwanto YA, Budiastra IW, Sutrisno, Kuroki S, Widodo S, Kamanga BM. 2021. Determination of αguaiene and azulene chemical content in patchouli aromatic oil (Pogostemon cablin benth.) from indonesia by nearinfrared spectroscopy. Indian J. Nat. Prod. Resour. 12(2):256–262. doi:10.56042/ijnpr.v12i2.24657.
Cayuela JA, García JF. 2017. Sorting olive oil based on alphatocopherol and total tocopherol content using nearinfrared spectroscopy (NIRS) analysis. J. Food Eng. 202:79–88. doi:10.1016/j.jfoodeng.2017.01.015.
Cortés V, Blasco J, Aleixos N, Cubero S, Talens P. 2019. Monitoring strategies for quality control of agricultural products using visible and nearinfrared spectroscopy: A review. Trends Food Sci. Technol. 85(October 2018):138–148. doi:10.1016/j.tifs.2019.01.015.
Cseháti T, Forgács E, Deyl Z, Miksik I. 2005. Chromatography in authenticity and traceability tests of vegetable oils and dairy products: A review. Biomed. Chromatogr. 19(3):183–190. doi:10.1002/bmc.486.
Daferera DJ, Tarantilis PA, Polissiou MG. 2002. Characterization of essential oils from Lamiaceae species by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 50(20):5503–5507. doi:10.1021/jf0203489.
Dantas TN, Cabral TJ, Dantas Neto AA, Moura MC. 2020. Enrichmnent of patchoulol extracted from patchouli (Pogostemon cablin) oil by molecular distillation using response surface and artificial neural network models. J. Ind. Eng. Chem. 81:219–227. doi:10.1016/j.jiec.2019.09.011.
Diego MC, Purwanto YA, Sutrisno S, Budiastra IW. 2018. Determination of the Characteristics and Classification of NearInfrared Spectra of Patchouli Oil (PogostemoncCablin Benth.) from Different Origin. IOP Conf. Ser. Earth Environ. Sci. 147(1):012013. doi:10.1088/17551315/147/1/012013.
Dũng NX, Leclercq PA, Thai TH, Moi LD. 1989. Chemical composition of patchouli oil from vietnam. J. Essent. Oil Res. 1(2):99–100. doi:10.1080/10412905.1989.9697758.
Dupuy N, Gaydou V, Kister J. 2014. Quantitative Analysis of Lavender (<i>Lavandula angustifolia</i>) Essential Oil Using Multiblock Data from Infrared Spectroscopy. Am. J. Anal. Chem. 05(10):633–645. doi:10.4236/ajac.2014.510071.
García Martín JF. 2022. Potential of NearInfrared Spectroscopy for the Determination of Olive Oil Quality. Sensors 22(8):2831. doi:10.3390/s22082831.
Gokulakrishnan J, Kuppusamy E, Shanmugam D, Appavu A, Kaliyamoorthi K. 2013. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pacific J. Trop. Dis. 3(1):26– 31. doi:10.1016/S22221808(13)600067.
Hasegawa Y, Tajima K, Toi N, Sugimura Y. 1992. An additional constituent occurring in the oil from a patchouli cultivar. Flavour Fragr. J. 7(6):333–335. doi:10.1002/ffj.2730070608.
Hu LF, Li SP, Cao H, Liu JJ, Gao JL, Yang FQ, Wang YT. 2006. GCMS fingerprint of Pogostemon cablin in China. J. Pharm. Biomed. Anal. 42(2):200–206. doi:10.1016/j.jpba.2005.09.015.
Kuriakose S, Joe IH. 2013. Feasibility of using near infrared spectroscopy to detect and quantify an adulterant in high quality sandalwood oil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115:568–573. doi:10.1016/j.saa.2013.06.076.
Lafhal S, Vanloot P, Bombarda I, Kister J, Dupuy N. 2016. Chemometric analysis of French lavender and lavandin essential oils by near infrared spectroscopy. Ind. Crops Prod. 80:156–164. doi:10.1016/j.indcrop.2015.11.017.
Lammertyn J, Peirs A, De Baerdemaeker J, Nicolaï B. 2000. Light penetration properties of NIR radiation in fruit with respect to nondestructive quality assessment. Postharvest Biol. Technol. 18(2):121–132. doi:10.1016/S09255214(99)00071X.
Lebot V, Champagne A, Malapa R, Shiley D. 2009. NIR determination of major constituents in tropical root and tuber crop flours. J. Agric. Food Chem. 57(22):10539–10547. doi:10.1021/jf902675n.
Lee MS, Hwang YS, Lee J, Choung MG. 2014. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by nearinfrared reflectance spectroscopy. Food Chem. 158:351–357. doi:10.1016/j.foodchem.2014.02.127.
Murugan R, Mallavarapu GR. 2013. αBisabolol, the main constituent of the essential oil of Pogostemon speciosus. Ind. Crops Prod. 49:237–239. doi:10.1016/j.indcrop.2013.04.047.
Nikolić M, Jovanović KK, Marković T, Marković D, Gligorijević N, Radulović S, Soković M. 2014. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Ind. Crops Prod. 61:225–232. doi:10.1016/j.indcrop.2014.07.011.
Ozaki Y. 2012. Nearinfrared spectroscopyits versatility in analytical chemistry. Anal. Sci. 28(6):545–562. doi:10.2116/analsci.28.545.
Ozaki Y, Fred McClure W, Christy A. 2013. Nearinfrared spectroscopy in food science and technology. New Jersey, USA: John Wiley & Sons, Inc., 1th ed edition.
Ramya HG, Palanimuthu V, Rachna S. 2013. An introduction to patchouli (Pogostemon cablin Benth.) A medicinal and aromatic plant: It’s importance to mankind. Agric. Eng. Int. CIGR J. 15(2):243–250.
Sandes SS, Zucchi MI, Pinheiro JB, Bajay MM, Batista CE, Brito FA, ArrigoniBlank MF, AlvaresCarvalho SV, SilvaMann R, Blank AF. 2016. Molecular characterization of patchouli (Pogostemon spp.) germplasm. Genet. Mol. Res. 15(1):1–12. doi:10.4238/gmr.15017458.
SilvaFilho SE, Wiirzler LAM, Cavalcante HAO, Uchida NS, de Souza SilvaComar FM, Cardia GFE, da Silva EL, Aguiar RP, BersaniAmado CA, Cuman RKN. 2016. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. Biomed. Pharmacother. 84:1697–1704. doi:10.1016/j.biopha.2016.10.084.
Wang L, Sun DW, Pu H, Cheng JH. 2017. Quality analysis, classification, and authentication of liquid foods by nearinfrared spectroscopy: A review of recent research developments. Critical Reviews in Food Science and Nutrition 57(7):1524–1538. doi:10.1080/10408398.2015.1115954.
Widoretno W. 2016. In vitro induction and characterization of tetraploid Patchouli (Pogostemon cablin Benth.) plant. Plant Cell. Tissue Organ Cult. 125(2):261–267. doi:10.1007/s1124001609460.
Williams P. 2001. Pionera e innovadora. Minnesota, USA: American Association of Cereal Chemists. Inc., 2th ed edition. Wu Y, Li C, Li X, Yuan M, Hu X. 2013. Comparison of the Essential Oil Compositions between Pogostemon cablin and Agatache rugosa Used as Herbs. J. Essent. OilBearing Plants 16(6):705–713. doi:10.1080/0972060X.2013.862077.
Yahya A, Yunus RM. 2013. Influence of sample preparation and extraction time on chemical composition of steam distillation derived patchouli oil. In: Procedia Eng., volume 53. p. 1–6. doi:10.1016/j.proeng.2013.02.001.
DOI: https://doi.org/10.22146/ijbiotech.69073
Article Metrics
Abstract views : 2684 | views : 2486Refbacks
- There are currently no refbacks.
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.