Antidiabetic activity of Averrhoa bilimbi fruit methanol extract through enhancement of GLUT4 protein expression in diabetes‐induced mice

https://doi.org/10.22146/ijbiotech.83839

Greselita Yolanda Juniyanti(1), Hesti Oktapiani(2), Ahmad Ridwan(3*)

(1) Master Program in Biology, School of Life Science and Technology, Institut Teknologi Bandung, Indonesia
(2) Master Program in Biology, School of Life Science and Technology, Institut Teknologi Bandung, Indonesia
(3) School of Life Science and Technology, Institut Teknologi Bandung, Indonesia
(*) Corresponding Author

Abstract


GLUT4, the glucose transporter responsive to insulin, is primarily found in muscle and adipose tissues. Diabetes can result from impaired insulin secretion and sensitivity. This study aims to evaluate the antidiabetic properties of Averrhoa bilimbi methanol extract by enhancing GLUT4 protein expression in mice with induced diabetes. Extraction was conducted via soxhletation using 96% methanol. Phytochemical analysis, employing qualitative tests and GC‐MS, was performed. Antioxidant activity (IC50) and toxicity (LD50) were analyzed using DPPH and OECD methods. This research followed an experimental post‐only control group design, with mice intraperitoneally injected with 150 mg/kg BW of alloxan monohydrate. A total of 24 mice were then divided into six groups: Normal, Negative Control, Positive Control (metformin), Low Dose (50 mg/kg BW), Medium Dose (250 mg/kg BW), and High Dose (300 mg/kg BW). Treatment lasted 21 days, with fasting blood glucose and body weight measurements taken every three days. On day 21, the liver and skeletal muscle were isolated, and blood was collected. Serum insulin and GLUT4 expression were assessed via ELISA and Western Blot, respectively. Phytochemical screening revealed flavonoids, saponins, terpenoids, tannins, and phenols and their derivatives. The IC50 value was 85 µg/mL, with an LD50 value of 1,000 mg/kg BW, indicating strong antioxidant activity and mild toxicity. The extract significantly reduced blood glucose levels but did not impact weight loss in diabetic mice. Average liver weight and index were highest in the Negative Control group, yet the lowest levels of hepatic and muscle glycogen were also observed in this group. Interestingly, insulin level and HOMA‐IR decreased in diabetic mice, while the Medium Dose group exhibited the highest GLUT4 expression levels. In conclusion, medium doses of A. bilimbi methanol extract hold potential for diabetes treatment, with a probable mechanism of targeting GLUT4 protein expression.


Keywords


Averrhoa bilimbi; blood glucose; diabetes mellitus; GLUT4; insulin

Full Text:

PDF


References

Abraham CM. 2016. A study on phytochemical constituents of Averrhoa bilimbi Linn. fruits. Indian J. Appl. Res. 6(7):29–31.

Astuti NT, Novitasari PR, Tjandrawinata R, Nugroho AE, Pramono S. 2022. Antidiabetic effect of andrographolide from sambiloto herbs (Andrographis paniculata (Burm.f.) Nees) through the expression of PPARγ and GLUT4 in adipocytes. Indones. J. Biotechnol. 27(4):203– 211. doi:10.22146/ijbiotech.68800.

Blois MS. 1958. Antioxidant determinations by the use of a stable free radical [10]. Nature 181:1199–1200. doi:10.1038/1811199a0.

Cerf ME. 2013. Beta cell dysfunction and insulin resistance. Front. Endocrinol. (Lausanne). 4:37. doi:10.3389/fendo.2013.00037.

Garvey WT. 2003. The role of uncoupling protein 3 in human physiology. J. Clin. Invest. 111(4):438–441. doi:10.1172/jci200317835.

Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A, Arya A. 2015. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int. J. Biol. Sci. 11(5):508–524. doi:10.7150/ijbs.11241.

Herman R, Kravos NA, Jensterle M, Janež A, Dolžan V. 2022. Metformin and insulin resistance: A review of the underlying mechanisms behind changes in GLUT4­mediated glucose transport. Int. J. Mol. Sci. 23(3):1264. doi:10.3390/ijms23031264.

Hnasko TS, Hnasko RM. 2015. The western blot. Methods Mol. Biol. 1318:87–96. doi:10.1007/978­1­4939­ 2742­5_9.

Huang Y, Zhou T, Zhang Y, Huang H, Ma Y, Wu C, Wang Q, Lin Q, Yang X, Pang K. 2021. Antidiabetic activity of a flavonoid­rich extract from flowers of Wisteria sinensis in type 2 diabetic mice via activation of the IRS­1/PI3K/Akt/GLUT4 pathway. J. Funct. Foods 77:104338. doi:10.1016/j.jff.2020.104338.

Indonesian Food and Drug Authority (BPOM). 2014. Regulation of the chairperson of the Indonesian Food and Drug Authority Number 7 of 2014 on guidelines for in vivo non­clinical toxicity tests.

International Diabetes Federation. 2021. IDF Diabetes Atlas Tenth edition 2021. URL https://www.diabetesat las.org.

Jiang S, Young JL, Wang K, Qian Y, Cai L. 2020. Diabetic­induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol. Med. Rep. 22(2):603– 611. doi:10.3892/mmr.2020.11175.

Kartikadewi A, Prasetyo A, Budipradigdo L, Nugroho H, Tjahjono K, Lelono A. 2019. Artemisia annua leaf extract increases GLUT­4 expression in type 2 diabetes mellitus rat. Indones. Biomed. J. 11(1):78–84. doi:10.18585/inabj.v11i1.531.

Kumar KA, Gousia S, Anupama M, Latha JNL. 2013. A review on phytochemical constituents and biological assays of Averrhoa bilimbi. Int. J. Pharm. Pharm. Sci. Res. 3(4):136–139.

Kurup SB, Mini S. 2017. Averrhoa bilimbi fruits attenuate hyperglycemia­mediated oxidative stress in streptozotocin­induced diabetic rats. J. Food Drug Anal. 25(2):360–368. doi:10.1016/j.jfda.2016.06.007.

Kurup SB, S M. 2017. Protective potential of Averrhoa bilimbi fruits in ameliorating the hepatic key enzymes in streptozotocin­induced diabetic rats. Biomed. Pharmacother. 85:725–732. doi:10.1016/j.biopha.2016.11.088.

Lee CH, Shih AZ, Woo YC, Fong CH, Leung OY, Janus E, Cheung BM, Lam KS. 2016. Optimal cut­offs of homeostasis model assessment of insulin resistance (HOMA­IR) to identify dysglycemia and type 2 diabetes mellitus: A15­year prospective study in Chinese. PLoS One 11(9):e0163424. doi:10.1371/journal.pone.0163424.

Lenzen S. 2008. The mechanisms of alloxan­ and streptozotocin­induced diabetes. Diabetologia 51(2):216–226. doi:10.1007/s00125­007­0886­7.

Liu D, Regenstein JM, Diao Y, Qiu J, Zhang H, Li J, Zhao H, Wang Z. 2019. Antidiabetic effects of water­soluble Korean pine nut protein on type 2 diabetic mice. Biomed. Pharmacother. 117:108989. doi:10.1016/j.biopha.2019.108989.

Lucchesi AN, Cassettari LL, Spadella CT. 2015. Alloxaninduced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. J. Diabetes Res. 2015:494578. doi:10.1155/2015/494578.

Md Sayem AS, Arya A, Karimian H, Krishnasamy N, Hasamnis AA, Hossain CF. 2018. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules 23(2):258. doi:10.3390/molecules23020258.

Minamii T, Nogami M, Ogawa W. 2018. Mechanisms of metformin action: In and out of the gut. J. Diabetes Investig. 9(4):701–703. doi:10.1111/jdi.1286.

Mouri MI, Badireddy M. 2020. Hyperglycemia. URL https://www.ncbi.nlm.nih.gov/books/NBK4309 00/. [cited 2021 Jan 11]. Mukherjee B, Hossain CM, Mondal L, Paul P, Ghosh MK. 2013. Obesity and insulin resistance: An abridged molecular correlation. Lipid Insights 6:1– 11. doi:10.4137/LPI.S10805.

Nakahara Y, Ozaki K, Sano T, Kodama Y, Matsuura T. 2014. Assessment of alloxan­induced diabetic rats as a periodontal disease model using a selective cyclooxygenase (COX)­2 inhibitor. J. Toxicol. Pathol. 27(2):123–129. doi:10.1293/tox.2013­0064.

OECD. 2002. OECD 423. Acute Oral Toxicity, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing.

Ortega R, Valdés M, Alarcón­Aguilar FJ, Fortis­Barrera Á, Barbosa E, Velazquez C, Calzada F. 2022. Antihyperglycemic effects of Salvia polystachya Cav. and its terpenoids: α­glucosidase and SGLT1 inhibitors. Plants 11(5):575. doi:10.3390/plants11050575.

Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. 2018. Complications of Diabetes 2017. J. Diabetes Res. 11:3086167. doi:10.1155/2018/3086167.

Satyanarayana K, Sravanthi K, Shaker I, Ponnulakshmi R, Selvaraj J. 2015. Role of chrysin on expression of insulin signaling molecules. J. Ayurveda Integr. Med. 6(4):248–258. doi:10.4103/0975­9476.157951.

Sholikhah EN. 2016. Indonesian medicinal plants as sources of secondary metabolites for pharmaceutical industry. J. thee Med. Sci. (Berkala Ilmu Kedokteran) 48(4):226–239. doi:10.19106/jmedsci004804201606.

Suluvoy JK, Berlin Grace VM. 2017. Phytochemical profile and free radical nitric oxide (NO) scavenging activity of Averrhoa bilimbi L. fruit extract. 3 Biotech 7(1):85. doi:10.1007/s13205­017­0678­9.

Thomas DD, Stockman MC, Yu L, Meshulam T, McCarthy AC, Ionson A, Burritt N, Deeney J, Cabral H, Corkey B, Istfan N, Apovian CM. 2019. Effects of medium chain triglycerides supplementation on insulin sensitivity and beta cell function: A feasibility study. PLoS One 14(12):e0226200. doi:10.1371/journal.pone.0226200.

Wang T, Wang J, Hu X, Huang X, Chen GX. 2020. Current understanding of glucose transporter 4 expression and functional mechanisms. World J. Biol. Chem. 11(3):76–98. doi:10.4331/wjbc.v11.i3.76.

Wojtunik KA, Ciesla LM, Waksmundzka­Hajnos M. 2014. Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2,2­Diphenyl­1­picrylhydrazyl method. J. Agric. Food Chem. 62(37):9088. doi:10.1021/jf502857s.

World Health Organization. 2021. Diabetes. URL https:// www.who.int/news­room/fact­sheets/detail/diabetes. [cited 2021 Jan 8].



DOI: https://doi.org/10.22146/ijbiotech.83839

Article Metrics

Abstract views : 1066 | views : 183

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.