Expression profiles of XIK1 and OsSWEET14 genes in parental and back‐ crossing rice lines after Xanthomonas oryzae pv. oryzae infection

https://doi.org/10.22146/ijbiotech.89092

Atirada Boondech(1), Kawee Sujipuli(2), Kumrop Ratanasut(3), Tepsuda Rungrat(4), Thanita Boonsangsrom(5), Niran Aeksiri(6), Wittaya Tawong(7), Pongsanat Pongcharoen(8*)

(1) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand
(2) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(3) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(4) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(5) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(6) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(7) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(8) Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000 Thailand
(*) Corresponding Author

Abstract


Oryza sativa L. ssp. indica (RD47 cultivar) is a major commercial rice variety known for its highly stable yields. However, it is highly susceptible to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). While previous research has focused on improving rice cultivars through breeding programs, no reports involved the interaction between Xoo infection and gene expression. This study aimed to analyze the relationship between bacterial blight disease and gene expression, focusing on two resistance genes (Xa21 and XIK1) and one susceptible gene (OsSWEET14). Gene expression analysis revealed that the Xa21 gene conferred effective resistance against bacterial blight Xoo16PK002 infection, providing high and moderate resistance to bacterial blight symptoms in two rice varieties carrying the Xa21 gene, IRBB21 and the near–isogenic RD47–Xa21 BC4F4, respectively. Additionally, the Xa21 gene directly induced XIK1 expression in both resistance rice cultivars. Moreover, one susceptible gene, OsSWEET14, was consistently up–regulated in only the bacterial blight–susceptible indica rice cultivar RD47. Therefore, the up–regulation of resistance genes and the suppression of susceptible genes contributed to the improvement of bacterial blight disease in the RD47 cultivar. Xa21 emerged as a criti‐ cally important gene in directly inducing mechanisms against Xoo, thereby promoting the reduction of bacterial blight disease.


Keywords


Bacterial blight; Gene expression; Oryza sativa; Resistance gene; Susceptible gene; Xanthomonas oryzae pv. oryzae

Full Text:

PDF


References

Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os­11N3. Plant Cell 22(11):3864–3876. doi:10.1105/tpc.110.078964.

Aryanti A, Almaida A, Heryani R, Supriatna N. 2016. Marker assisted selection for bacterial leaf blight rice mutant lines resistant. Indones. J. Biotechnol. 20(1):11–18. doi:10.22146/ijbiotech.15264.

Bandumula N. 2018. Rice production in Asia: Key to global food security. Proc. Natl. Acad. Sci. India Sect.B ­ Biol. Sci. 88(4):1323–1328. doi:10.1007/s40011­ 017­0867­7.

Buddhachat K, Sripairoj N, Ritbamrung O, Inthima P, Ratanasut K, Boonsrangsom T, Rungrat T, Pongcharoen P, Sujipuli K. 2022. RPA­assisted Cas12a system for detecting pathogenic Xanthomonas oryzae, a causative agent for bacterial leaf blight disease in rice. Rice Sci. 29(4):340–352. doi:10.1016/j.rsci.2021.11.005.

Hu H, Wang J, Shi C, Yuan C, Peng C, Yin J, Li W, He M, Wang J, Ma B, Wang Y, Li S, Chen X. 2015. A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21­mediated disease resistance. Rice 8(1):1–9. doi:10.1186/s12284­014­0034­1.

Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. 2020. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13(1):1–12. doi:10.1186/s12284­ 019­0358­y.

Kauffman H, Reddy A, Hsieh S, Merca S. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 57(6):537–541.

Liu F, McDonald M, Schwessinger B, Joe A, Pruitt R, Erickson T, Zhao X, Stewart V, Ronald PC. 2019. Variation and inheritance of the Xanthomonas raxX­raxSTAB gene cluster required for activation of XA21­mediated immunity. Mol. Plant Pathol. 20(5):656–672. doi:10.1111/mpp.12783.

Liu W, Liu J, Triplett L, Leach JE, Wang GL. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52:213–241. doi:10.1146/annurev­phyto­ 102313­045926.

Luo D, Huguet­Tapia JC, Raborn RT, White FF, Brendel VP, Yang B. 2021. The Xa7 resistance gene guards the rice susceptibility gene SWEET14 against exploitation by the bacterial blight pathogen. Plant Commun. 2(3):100164. doi:10.1016/j.xplc.2021.100164.

Nadhira NE, Wafa A, Fanata WID, Addy HS. 2022. Resistance gene expression in selected Indonesian pigmented rice varieties against infection by Xanthomonas oryzae pv. oryzae. Indones. J. Biotechnol. 27(2):51–57. doi:10.22146/ijbiotech.70445.

Niño­Liu DO, Ronald PC, Bogdanove AJ. 2006. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 7(5). doi:10.1111/j.1364­3703.2006.00344.x.

Oliva R, Ji C, Atienza­Grande G, Huguet­Tapia JC, PerezQuintero A, Li T, Eom JS, Li C, Nguyen H, Liu B, Auguy F, Sciallano C, Luu VT, Dossa GS, Cunnac S, Schmidt SM, Slamet­Loedin IH, Vera Cruz C, Szurek B, Frommer WB, White FF, Yang B. 2019. Broadspectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37(11):1344–1350. doi:10.1038/s41587­019­0267­z.

Promma P, Grandmottet F, Ratanasut K. 2016. Characterisation of Xa21 and defence–related gene expression in RD47 x IRBB21 hybrid rice subject to Xanthomonas oryzae pv. oryzae. In: Proceedings of The National and International Graduate Research Conference 2016, Khon Kaen, Thailand. p. 1485–1493.

Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJG, Luu DD, Chen H, Bahar O, Daudi A, De Vleesschauwer D, Caddell D, Zhang W, Zhao X, Li X, Heazlewood JL, Ruan D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC. 2015. The rice immune receptor Xa21 recognizes a tyrosine­sulfated protein from a Gram­negative bacterium. Sci. Adv. 1(6):e1500245. doi:10.1126/sciadv.1500245.

Sagun CM, Grandmottet F, Ratanasut K. 2019. Differential expression of Xoo­induced kinase 1 (XIK1), a Xanthomonas oryzae pv. oryzae responsive gene, in bacterial blight­susceptible and Xa21­mediated resistant indica rice cultivars. Agric. Nat. Resour. 53(4):334–339. doi:10.34044/j.anres.2019.53.4.02.

Sagun CM, Grandmottet F, Suachaowna N, Sujipuli K, Ratanasut K. 2020. Validation of suitable reference genes for normalization of quantitative reverse transcriptase­polymerase chain reaction in rice infected by Xanthomonas oryzae pv. oryzae. Plant Gene 21:100217. doi:10.1016/j.plgene.2019.100217.

Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. 1995. A receptor kinaselike protein encoded by the rice disease resistance gene, Xa21. Science (80­. ). 270(5243):1804–1806. doi:10.1126/science.270.5243.1804.

Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector­mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 200(3):808–819. doi:10.1111/nph.12411.

Swamy P, Panchbhai AN, Dodiya P, Naik V, Panchbhai SD, Zehr UB, Azhakanandam K, Char BR. 2006. Evaluation of bacterial blight resistance in rice lines carrying multiple resistance genes and Xa21 transgenic lines. Curr. Sci. 90(6):818–824.

Thomas NC, Oksenberg N, Liu F, Caddell D, Nalyvayko A, Nguyen Y, Schwessinger B, Ronald PC. 2018. The rice Xa21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae. PeerJ 9(6):e4456. doi:10.7717/peerj.4456.

Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA, Schmidt CL, Bogdanove AJ, Leach JE. 2012. Transcription activator­like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector­deficient strain of Xanthomonas oryzae. New Phytol. 196(4):1197–1207. doi:10.1111/j.1469­8137.2012.04367.x.

Wang Z, Wang Y, Yang J, Hu K, An B, Deng X, Li Y. 2016. Reliable selection and holistic stability evaluation of reference genes for rice under 22 different experimental conditions. Appl. Biochem. Biotechnol. 179(5):753–775. doi:10.1007/s12010­016­2029­4.

Xu X, Li Y, Xu Z, Yan J, Wang Y, Wang Y, Cheng G, Zou L, Chen G. 2022. TALE­induced immunity against the bacterial blight pathogen Xanthomonas oryzae pv. oryzae in rice. Phytopathol. Res. 4(1):47. doi:10.1186/s42483­022­00153­x.

Yang B, Sugio A, White FF. 2006. Os8N3 is a host disease­susceptibility gene for bacterial blight of rice. Proc. Natl. Acad. Sci. U. S. A. 103(27):10503–10508. doi:10.1073/pnas.0604088103.

Yang B, White FF. 2004. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol. Plant­Microbe Interact. 17(11):1192–1200. doi:10.1094/MPMI.2004.17.11.1192.

Zeng X, Luo Y, Vu NTQ, Shen S, Xia K, Zhang M. 2020. CRISPR/Cas9­mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol. 20(1):1–11. doi:10.1186/s12870­ 020­02524­y.

Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 82(4):632–643. doi:10.1111/tpj.12838.

Zhu Z, Wang T, Lan J, Ma J, Xu H, Yang Z, Guo Y, Chen Y, Zhang J, Dou S, Yang M, Li L, Liu G. 2022. Rice MPK17 plays a negative role in the Xa21­mediated resistance against Xanthomonas oryzae pv. oryzae. Rice 15(1):41. doi:10.1186/s12284­022­00590­4.



DOI: https://doi.org/10.22146/ijbiotech.89092

Article Metrics

Abstract views : 1517 | views : 925

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.