Protective effects of Zingiber cassumunar Roxb. extract against UVB‐induced oxidative stress in Wistar albino rats (Rattus novergicus Berkenhout, 1769)
Dian Ayuning Tyas(1), Nastiti Wijayanti(2), Tri Rini Nuringtyas(3*), Subagus Wahyuono(4)
(1) Doctoral Program of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(2) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(3) Biotechnology Research Center, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(4) Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Yogyakarta
(*) Corresponding Author
Abstract
Protecting the skin from the effects of UVB radiation using natural products is crucial in the cosmeceutical industry. This study aims to investigate the protective effects of Bangle (Zingiber cassumunar Roxb.) against UVB‐induced skin damage in Wistar albino rats. The rhizomes were macerated using 70% ethanol v/v, followed by n‐hexane to obtain n‐hexane soluble and n‐hexane insoluble fraction. The antioxidant properties of the ethanol extracts and n‐hexane soluble fraction were evaluated using a 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assay. The study also examined the antiphotoaging properties through reactive oxygen species (ROS) scavenging assay, matrix metalloproteinase‐1 (MMP‐1) expression, and tyrosinase expression against UVB radiation in Wistar albino rats. The results demonstrated that the Z. cassumunar extract and fraction effectively converted DPPH radicals into a more stable compound. Analysis revealed the presence of Benzene, 4‐(1Z)‐1,3‐butadien‐1‐yl‐1,2‐dimethoxy‐ and (E)‐4‐(3,4‐Dimethoxyphenyl) but‐3‐en‐1‐ol as the primary compounds in both the extract and fraction, suggesting their contribution to the observed activity. Furthermore, Z. cassumunar compounds could reduce UVB‐induced ROS production and may protect against skin photoaging by changing the expression of MMP‐1 and tyrosinase levels in Wistar albino rats. These findings suggest that Z. cassumunar holds promise for preventing skin aging.
Keywords
Full Text:
PDFReferences
Albrecht S, Jung S, Müller R, Lademann J, Zuberbier T, Zastrow L, Reble C, Beckers I, Meinke MC. 2019. Skin type differences in solar-simulated radiation-induced oxidative stress. Br. J. Dermatol. 180(3):597–603. doi:10.1111/bjd.17129.
Bin Jantan I, Mohd Yassin MS, Chin CB, Chen LL, Sim NL. 2003. Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm. Biol. 41(5):392– 397. doi:10.1076/phbi.41.5.392.15941.
Chongmelaxme B, Sruamsiri R, Dilokthornsakul P, Dhippayom T, Kongkaew C, Saokaew S, Chuthaputti A, Chaiyakunapruk N. 2017. Clinical effects of Zingiber cassumunar (Plai): A systematic review. Complement. Ther. Med. 35:70–77. doi:10.1016/j.ctim.2017.09.009.
Fadhilah K, Wahyuono S, Astuti P. 2021. Fractions and isolated compounds from Lansium domesticum fruit peel exhibited cytotoxic activity against T-47D and HepG2 cell lines. Biodiversitas 22:3743–3748. doi:10.13057/biodiv/d220918.
Han AR, Kim H, Piao D, Jung CH, Seo EK. 2021. Phytochemicals and bioactivities of Zingiber cassumunar Roxb. Molecules 26(8):2377. doi:10.3390/molecules26082377.
Kim H, Xue X. 2020. Detection of total reactive oxygen species in adherent cells by 2’,7’- dichlorodihydrofluorescein diacetate staining. J. Vis. Exp. 2020(160):10.3791/60682. doi:10.3791/60682.
Kim JH, Lee JE, Kim T, Yeom MH, Park JS, di Luccio E, Chen H, Dong Z, Lee KW, Kang NJ. 2020. 7,3′,4′-trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses α-melanocytestimulating hormone-induced melanogenesis by targeting melanocortin 1 receptor. Front. Mol. Biosci. 7:577284. doi:10.3389/fmolb.2020.577284.
Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. 2019. Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients 11(6):1341. doi:10.3390/nu11061341.
Lee KO, Kim SN, Kim YC. 2014a. Anti-wrinkle effects of water extracts of teas in hairless mouse. Toxicol. Res. 30(4):283–289. doi:10.5487/TR.2014.30.4.283.
Lee MS, Oh YJ, Kim JW, Han KM, Kim DS, Park JW, Kim HM, Kim DW, Kim YS. 2023. Antioxidant, whitening, antiwrinkle, and anti-inflammatory effect of Ajuga spectabilis Nakai extract. Plants 12(1):79. doi:10.3390/plants12010079.
Lee TH, Seo JO, Baek SH, Kim SY. 2014b. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in guinea pig skin. Biomol. Ther. 22(1):35–40. doi:10.4062/biomolther.2013.081.
Lephart ED. 2016. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res. Rev. 31:36–54. doi:10.1016/j.arr.2016.08.001.
Masuda T, Jitoe A. 1995. Phenylbutenoid monomers from the rhizomes of Zingiber cassumunar. Phytochemistry 39(2):459–461. doi:10.1016/0031- 9422(94)00883-U.
Nur S, Mubarak F, Jannah C, Winarni DA, Rahman DA, Hamdayani LA, Sami FJ. 2019. Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fractions of paku atai tuber (Angiopteris ferox Copel). Food Res. 3(6):734–740. doi:10.26656/fr.2017.3(6).135.
Park J, Chung H, Bang SH, Han AR, Seo EK, Chang SE, Kang DH, Oh ES. 2015. (E)- 4-(3,4-dimethoxyphenyl)but-3-en-1-ol enhances melanogenesis through increasing upstream stimulating factor-1-mediated tyrosinase expression. PLoS One 10(11):e0141988. doi:10.1371/journal.pone.0141988.
Petruk G, Giudice RD, Rigano MM, Monti DM. 2018. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell. Longev. 2018:1454936. doi:10.1155/2018/1454936.
Shin DW. 2020. Various biological effects of solar radiation on skin and their mechanisms: Implications for phototherapy. Animal Cells Syst. (Seoul). 24(4):181– 188. doi:10.1080/19768354.2020.1808528.
Shin JW, Kwon SH, Choi JY, Na JI, Huh CH, Choi HR, Park KC. 2019. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 20(9):2126. doi:10.3390/ijms20092126.
Sukatta U, Rugthaworn P, Punjee P, Chidchenchey S, Keeratinijakal V. 2009. Chemical composition and physical properties of oil from Plai (Zingiber cassumunar Roxb.) obtained by hydro distillation and hexane extraction. Kasetsart J. - Nat. Sci. 43(5):212– 217.
Susilo S, Suciati R. 2016. Studies of morphological and secondary metabolites variety of mosses (bryophytes) in Cibodas, West Java. Int. J. Adv. Res. (Indore) 4(12):1397–1402. doi:10.21474/IJAR01/2536.
Wang Y, Hao MM, Sun Y, Wang LF, Wang H, Zhang YJ, Li HY, Zhuang PW, Yang Z. 2018. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 23(1):106. doi:10.3390/molecules23010106.
Wulansari ED, Wahyuono S, Marchaban, Widyarini S. 2016. Potential bengle (Zingiber cassumunar Roxb.) rhizomes for sunscreen and antioxidant compounds. Int. J. PharmTech Res. 9(11):72–77.
You YJ, Wu PY, Liu YJ, Hou CW, Wu CS, Wen KC, Lin CY, Chiang HM. 2019. Sesamol inhibited ultraviolet radiation-induced hyperpigmentation and damage in C57BL/6 mouse skin. Antioxidants 8(7):207. doi:10.3390/antiox8070207.
Zukhiroh Z, Putra A, Chodidjah C, Sumarawati T, Subchan P, Trisnadi S, Hidayah N, Amalina ND. 2022. Effect of secretome-hypoxia mesenchymal stem cells on regulating SOD and MMP- 1 mRNA expressions in skin hyperpigmentation rats. Open Access Maced. J. Med. Sci. 10(A):1–7. doi:10.3889/oamjms.2022.10348.
DOI: https://doi.org/10.22146/ijbiotech.90224
Article Metrics
Abstract views : 1336 | views : 1090Refbacks
- There are currently no refbacks.
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.