Omics strategies for crop improvement in response to climate change‐imposed abiotic stress

https://doi.org/10.22146/ijbiotech.94026

Abhilasha Shourie(1), Nishtha Madaan(2), Paridhi Saini(3*)

(1) Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
(2) Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
(3) Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
(*) Corresponding Author

Abstract


Given the current status of climate change and its impact on global food security, it is imperative to improve the abiotic stress tolerance of crop plants to enhance productivity. Traditional plant breeding methods have been widely employed to develop climate‐resilient crops; however, their success has been limited due to the lack of understanding of the complex relationships between genes and stress‐related phenotypes. The advent of modern genomics has enabled the expression analysis of stress genes in plants, as genome‐wide information is readily accessible and can be utilized to assign and validate the gene functions. This article highlights the potential applications and limitations of present‐day genomic technologies based on genome mapping, gain or loss‐of‐function analysis for identification of the role of a particular gene in abiotic stress response in plants. Such technologies are highly efficient in candidate gene identification; gene‐trait relationships establishment; functional elucidation of genes; and stress genes modification in crop plants. Modern high throughput genomic technologies offer wide scope for deciphering the complexities of genetic regulation of stress in plants; modulating stress responses; and developing stress tolerance in crop plants against drought, temperature, salinity, osmotic imbalance, herbicides and heavy metal toxicity.


Keywords


CRISPR; Gene function identification; Gene‐trait relationships; Genome editing; GWAS; High throughput genomic technologies

Full Text:

PDF


References

Abdelraheem A, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Wedegaertner T, Zhang J. 2021. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Mol. Genet. Genomics 296(1):119–129. doi:10.1007/s00438­020­01733­2.

Adhikari P, Goodrich E, Fernandes SB, Lipka AE, Tranel P, Brown P, Jamann TM. 2020. Genetic variation associated with PPO inhibiting herbicide tolerance in sorghum. PLoS One 15(10):e0233254. doi:10.1371/journal.pone.0233254.

Ahammed GJ, Li X, Wan H, Zhou G, Cheng Y. 2020. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. (Amsterdam). 270:109444. doi:10.1016/j.scienta.2020.109444.

Akinyi DP, Ng’ang’a SK, Ngigi M, Mathenge M, Girvetz E. 2022. Cost­benefit analysis of prioritized climate­smart agricultural practices among smallholder farmers: evidence from selected value chains across sub­Saharan Africa. Heliyon 8(4):e09228. doi:10.1016/j.heliyon.2022.e09228.

Al­Tamimi N, Langan P, Bernád V, Walsh J, Mangina E, Negrão S. 2022. Capturing crop adaptation to abiotic stress using image­based technologies. Open Biol. 12(6):210353. doi:10.1098/rsob.210353.

Atwood SE, O’Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA. 2014. Replication protein A subunit 3 and the iron efficiency response in soybean. Plant, Cell Environ. 37(1):213– 234. doi:10.1111/pce.12147.

Banerjee S, Mondal S, Islam J, Sarkar R, Saha B, Sen A. 2024. Rhizospheric nano­remediation salvages arsenic genotoxicity: Zinc­oxide nanoparticles articulate better oxidative stress management, reduce arsenic uptake, and increase yield in Pisum sativum (L.). Sci. Total Environ. 913:169493. doi:10.1016/j.scitotenv.2023.169493.

Bhat MA, Mir RA, Kumar V, Shah AA, Zargar SM, Rahman S, Jan AT. 2021. Mechanistic insights of CRISPR/Cas­mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol. Plant. 172(2):1255–1268. doi:10.1111/ppl.13359.

Bo W, Zhaohui Z, Huanhuan Z, Xia W, Binglin L, Lijia Y, Xiangyan H, Deshui Y, Xuelian Z, Chunguo W, Wenqin S, Chengbin C, Yong Z. 2019. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci. 26(2):98– 108. doi:10.1016/j.rsci.2018.12.005.

Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A, Zouine M. 2020. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (Basel). 11(3):272. doi:10.3390/genes11030272.

Cai C, Wu S, Niu E, Cheng C, Guo W. 2017. Identification of genes related to salt stress tolerance using intron­length polymorphic markers, association mapping and virus­induced gene silencing in cotton. Sci. Rep. 7:528. doi:10.1038/s41598­017­00617­7.

Chaturvedi P, Pierides I, Zhang S, Schwarzerova J, Ghatak A, Weckwerth W. 2024. Multiomics for crop improvement. Singapore: Springer. doi:10.1007/978­ 981­99­4673­0_6.

Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. 2022. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt­tolerant plant growth­promoting rhizobacteria and CRISPR/Cas9. Biotechnol. Genet. Eng. Rev. 39(2):311–347. doi:10.1080/02648725.2022.2131958.

Checker VG, Khurana P. 2013. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. Plant Cell Rep. 32:1729–1741. doi:10.1007/s00299­013­1483­5.

Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. 2007. GmDREB2, a soybean DRE­binding transcription factor, conferred drought and high­salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 353(2):299–305. doi:10.1016/j.bbrc.2006.12.027.

Chopra R, Burow G, Burke JJ, Gladman N, Xin Z. 2017. Genome­wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC Plant Biol. 17:12. doi:10.1186/s12870­016­ 0966­2.

Cox KL, Meng F, Wilkins KE, Li F, Wang P, Booher NJ, Carpenter SC, Chen LQ, Zheng H, Gao X, Zheng Y, Fei Z, Yu JZ, Isakeit T, Wheeler T, Frommer WB, He P, Bogdanove AJ, Shan L. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat. Commun. 8:15588. doi:10.1038/ncomms15588.

Dass A, Abdin MZ, Reddy VS, Leelavathi S. 2017. Isolation and characterization of the dehydration stressinducible GhRDL1 promoter from the cultivated upland cotton (Gossypium hirsutum). J. Plant Biochem. Biotechnol. 26:113–119. doi:10.1007/s13562­016­ 0369­3.

Devate NB, Krishna H, Parmeshwarappa SKV, Manjunath KK, Chauhan D, Singh S, Singh JB, Kumar M, Patil R, Khan H, Jain N, Singh GP, Singh PK. 2022. Genome­wide association mapping for component traits of drought and heat tolerance in wheat. Front. Plant Sci. 13:943033. doi:10.3389/fpls.2022.943033.

D’Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, Pennewaert A, D’Hont K, Bossut M, Jantz D, Ruiter R, Broadhvest J. 2013. Targeted molecular trait stacking in cotton through targeted double­strand break induction. Plant Biotechnol. J. 11(8):933–941. doi:10.1111/pbi.12085.

Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Lyznik LA. 2013. Male­sterile maize plants produced by targeted mutagenesis of the cytochrome P450­like gene (MS26) using a re­designed I­CreI homing endonuclease. Plant J. 76(5):888–899. doi:10.1111/tpj.12335.

El­Ramady H, Abowaly M, Elbehiry F, Omara AED, Elsakhawy T, Mohamed S, Belal AA, Elbasiouny H, Abdalla Z. 2019. Stressful environments and sustainable soil management: A case study of Kafr El­Sheikh, Egypt. Environ. Biodivers. Soil Secur. 3(2019):193–213. doi:10.21608/jenvbs.2019.17750.1070.

FAO. 2023. Achieving SDG 2 without breaching the 1.5 °C threshold: A global roadmap, Part 1 – How agrifood systems transformation through accelerated climate actions will help achieving food security and nutrition, today and tomorrow, In brief. Rome: FAO. URL https://openknowledge.fao.org/handle/2 0.500.14283/cc9113en.

Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, McGrath SP, van Hoewyk D, Pilon­Smits EA. 2010. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol. 153(4):1630–1652. doi:10.1104/pp.110.156570.

Gad M, Chao H, Li H, Zhao W, Lu G, Li M. 2021. QTL mapping for seed germination response to drought stress in Brassica napus. Front. Plant Sci. 11:629970. doi:10.3389/fpls.2020.629970.

Ganie SA, Wani SH, Henry R, Hensel G. 2021. Improving rice salt tolerance by precision breeding in a new era. Curr. Opin. Plant Biol. 60:101996. doi:10.1016/j.pbi.2020.101996.

Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S. 2017. An NAM domain gene, GhNAC79, improves resistance to drought stress in upland cotton. Front. Plant Sci. 8:1657. doi:10.3389/fpls.2017.01657.

Gupta A, Shaw BP. 2020. Biochemical and molecular characterisations of salt tolerance components in rice varieties tolerant and sensitive to NaCl: The relevance of Na+ exclusion in salt tolerance in the species. Funct. Plant Biol. 48(1):72–87. doi:10.1071/FP20089.

Gutiérrez N, Pégard M, Balko C, Torres AM. 2023. Genome­wide association analysis for drought tolerance and associated traits in faba bean (Vicia faba L.). Front. Plant Sci. 14:1091875. doi:10.3389/fpls.2023.1091875.

Guzinski J, Mauger S, Cock JM, Valero M. 2016. Characterization of newly developed expressed sequence tag­derived microsatellite markers revealed low genetic diversity within and low connectivity between European Saccharina latissima populations. J. Appl. Phycol. 28:3057–3070. doi:10.1007/s10811­016­ 0806­7.

Hahn F, Nekrasov V. 2019. CRISPR/Cas precision: Do we need to worry about off­targeting in plants? Plant Cell Rep. 38(4):437–441. doi:10.1007/s00299­018­ 2355­9.

He M, He CQ, Ding NZ. 2018. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9:1771. doi:10.3389/fpls.2018.01771.

Jangra S, Chaudhary V, Yadav RC, Yadav NR. 2021. High­throughput phenotyping: A platform to accelerate crop improvement. Phenomics 1(2):31–53. doi:10.1007/s43657­020­00007­6.

Jia H, Hao L, Guo X, Liu S, Yan Y, Guo X. 2016. A Raf­like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci. 252:267–281. doi:10.1016/j.plantsci.2016.07.014.

Kang G, Ma H, Liu G, Han Q, Li C, Guo T. 2013. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Mol. Genet. Genomics 288(11):591–599. doi:10.1007/s00438­013­0773­5.

Kaur N, Sharma S, Hasanuzzaman M, Pati PK. 2022. Genome editing: A promising approach for achieving abiotic stress tolerance in plants. Int. J. Genomics 2022:5547231. doi:10.1155/2022/5547231.

Kavi Kishor PB, Sreenivasulu N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell Environ. 37(2):300–311. doi:10.1111/pce.12157.

Kim D, Alptekin B, Budak H. 2018. CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics 18:31–41. doi:10.1007/s10142­017­0572­x.

Kokila S, Devaraj VR. 2021. A comparative study of ESTs induced under drought and salinity stress in hyacinth bean (Lablab purpureus). Am. J. Plant Sci. 12(05):840–857. doi:10.4236/ajps.2021.125057.

Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. 2017. Genome­wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 12(2):e0171254. doi:10.1371/journal.pone.0171254.

Li C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y. 2013a. Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid— mediated drought tolerance. Int. J. Mol. Sci. 14(11):21983–21996. doi:10.3390/ijms141121983.

Li CH, Wang G, Zhao JL, Zhang LQ, Ai LF, Han YF, Sun DY, Zhang SW, Sun Y. 2014. The receptor­like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26(6):2538–2553. doi:10.1105/tpc.114.125187.

Li D, Dossa K, Zhang Y, Wei X, Wang L, Zhang Y, Liu A, Zhou R, Zhang X. 2018. GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes (Basel). 9(2):87. doi:10.3390/genes9020087.

Li D, Quan C, Song Z, Li X, Yu G, Li C, Muhammad A. 2021. High­throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Front. Bioeng. Biotechnol. 8:623705. doi:10.3389/fbioe.2020.623705.

Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L. 2019. CRISPR/Cas9­ Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. 19:38. doi:10.1186/s12870­018­1627­4.

Li T, Huang S, Zhou J, Yang B. 2013b. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryza epv. oryzae in rice. Mol. Plant 6(3):781–789. doi:10.1093/mp/sst034.

Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R. 2016a. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep. 6:35040. doi:10.1038/srep35040.

Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R. 2016b. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep. 6:35040. doi:10.1038/srep35040.

Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González­Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. 2024. Towards realizing nanoenabled precision delivery in plants. Nat. Nanotechnol. 19:1255–1269. doi:10.1038/s41565­024­01667­ 5.

Ma J, Liu Y, Zhang P, Chen T, Tian T, Wang P, Che Z, Shahinnia F, Yang D. 2022. Identification of quantitative trait loci (QTL) and meta­QTL analysis for kernel size­related traits in wheat (Triticum aestivum L.). BMC Plant Biol. 22:607. doi:10.1186/s12870­022­ 03989­9.

Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, Suprunova TP, Kalinina NO, Taliansky ME. 2019. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR­Cas9 editing. Dokl. Biochem. Biophys. 484(1):88–91. doi:10.1134/S1607672919010241.

Meng Q, Zhang W, Hu X, Shi X, Chen L, Dai X, Qu H, Xia Y, Liu W, Gu M, Xu G. 2020. Two ADP­glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice. Plant J. 104(5):1269–1284. doi:10.1111/tpj.14998.

Miao H, Sun P, Liu Q, Liu J, Xu B, Jin Z. 2017. The AGPase family proteins in banana: Genome­wide identification, phylogeny, and expression analyses reveal their involvement in the development, ripening, and abiotic/biotic stress responses. Int. J. Mol. Sci. 18(8):1581. doi:10.3390/ijms18081581.

Muhammad Aslam M, Akhtar K, K Karanja J, ul Ain N, Ullah Haider F. 2021. Understanding the adaptive mechanisms of plant in low phosphorous soil. Rijeka: IntechOpen. doi:10.5772/intechopen.91873.

Murmu S, Sinha D, Chaurasia H, Sharma S, Das R, Jha GK, Archak S. 2024. A review of artificial intelligence­assisted omics techniques in plant defense: Current trends and future directions. Front. Plant Sci. 15:1292054. doi:10.3389/fpls.2024.1292054.

Musawira, Suharsono, Miftahudin, Tjahjoleksono A. 2022. Establishment of transgenic potato cultivar IPB CP1 plants containing gene encoding for superoxide dismutase to increase the abiotic stress tolerance. Indones. J. Biotechnol. 27(3):118–125. doi:10.22146/ijbiotech.68040.

Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi­Shinozaki K. 2007. Functional analysis of a NAC­type transcription factor OsNAC6 involved in abiotic and biotic stress­responsive gene expression in rice. Plant J. 51(4):617–630. doi:10.1111/j.1365­313X.2007.03168.x.

Ogata T, Nagatoshi Y, Yamagishi N, Yoshikawa N, Fujita Y. 2017. Virus­induced down­regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean. PLoS One 12(4):e0175650. doi:10.1371/journal.pone.0175650.

Pantalião GF, Narciso M, Guimarães C, Castro A, Colombari JM, Breseghello F, Rodrigues L, Vianello RP, Borba TO, Brondani C. 2016. Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica 144(6):651–664. doi:10.1007/s10709­016­9932­z.

Poorter H, Hummel GM, Nagel KA, Fiorani F, von Gillhaussen P, Virnich O, Schurr U, Postma JA, van de Zedde R, Wiese­Klinkenberg A. 2023. Pitfalls and potential of high­throughput plant phenotyping platforms. Front. Plant Sci. 14:1233794. doi:10.3389/fpls.2023.1233794.

Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y. 2016. Genome­wide association study of drought­related resistance traits in Aegilops tauschii. Genet. Mol. Biol. 39(3):398–407. doi:10.1590/1678­ 4685­GMB­2015­0232.

Quan X, Liu J, Zhang N, Xie C, Li H, Xia X, He W, Qin Y. 2021. Genome­wide association study uncover the genetic architecture of salt tolerance­related traits in common wheat (Triticum aestivum L.). Front. Genet. 12:663941. doi:10.3389/fgene.2021.663941.

Raj SRG, Nadarajah K. 2023. QTL and candidate genes Techniques and advancement in abiotic stress resistance breeding of major cereals. Int. J. Mol. Sci. 24(1):6. doi:10.3390/ijms24010006.

Ramegowda V, Mysore KS, Senthil­Kumar M. 2014. Virus­induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abioticstress­responsive genes in crop plants. Front. Plant Sci. 5:323. doi:10.3389/fpls.2014.00323.

Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM. 2014. Stress­inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res. 23(3):421–439. doi:10.1007/s11248­ 013­9776­6.

Raza A, Ashraf F, Zou X, Zhang X, Tosif H. 2020. Plant adaptation and tolerance to environmental stresses: Mechanisms and perspectives. Singapore: Springer. doi:10.1007/978­981­15­2156­0_5.

Reddy SS, Saini DK, Singh GM, Sharma S, Mishra VK, Joshi AK. 2023. Genome­wide association mapping of genomic regions associated with drought stress tolerance at seedling and reproductive stages in bread wheat. Front. Plant Sci. 14:1166439. doi:10.3389/fpls.2023.1166439.

Rico­Cambron TY, Bello­Bello E, Martínez O, HerreraEstrella L. 2023. A non­invasive method to predict drought survival in Arabidopsis using quantum yield under light conditions. Plant Methods 19(1):127. doi:10.1186/s13007­023­01107­w.

Rössner C, Lotz D, Becker A. 2022. VIGS goes viral: How VIGS transforms our understanding of plant science. Annu. Rev. Plant Biol. 73:703–728. doi:10.1146/annurev­arplant­102820­020542.

Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. 2022. Comprehensive evaluation of mapping complex traits in wheat using genome­wide association studies. Mol. Breed. 42:1. doi:10.1007/s11032­021­01272­7.

Saini P, Kamboj D, Yadav RC, Yadav NR. 2019. SRAPs and EST­SSRs provide useful molecular diversity for targeting drought and salinity tolerance in Indian mustard. Mol. Biol. Rep. 46(1):1213–1225. doi:10.1007/s11033­019­04590­4.

Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V. 2020. CRISPRCas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol. Mol. Biol. Plants 26(6):1099– 1110. doi:10.1007/s12298­020­00819­w.

Sarkar B, Varalaxmi Y, Vanaja M, RaviKumar N, Prabhakar M, Yadav SK, Maheswari M, Singh VK. 2023. Mapping of QTLs for morphophysiological and yield traits under water­deficit stress and well­watered conditions in maize. Front. Plant Sci. 14:1124619. doi:10.3389/fpls.2023.1124619.

Sauer NJ, Narváez­Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schöpke CR, Gocal GF. 2016. Oligonucleotidemediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 170(4):1917–1928. doi:10.1104/pp.15.01696.

Shahzad A, Qian M, Sun B, Mahmood U, Li S, Fan Y, Chang W, Dai L, Zhu H, Li J, Qu C, Lu K. 2021. Genome­wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Sci. 6(1):12–22. doi:10.1016/j.ocsci.2021.01.002.

Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M. 2017. Knockout of the annexin gene OsAnn3 via CRISPR/Cas9­mediated genome editing decreased cold tolerance in rice. J. Plant Biol. 60(6):539–547. doi:10.1007/s12374­016­0400­1.

Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE. 2017a. ARGOS8 variants generated by CRISPR­Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15(2):207–216. doi:10.1111/pbi.12603.

Shi Y, Gao L, Wu Z, Zhang X, Wang M, Zhang C, Zhang F, Zhou Y, Li Z. 2017b. Genome­wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol. 17(1):92. doi:10.1186/s12870­017­ 1044­0.

Shourie A, Tomar P, Srivastava D, Chauhan R. 2014. Enhanced biosynthesis of quercetin occurs as a photoprotective measure in Lycopersicon esculentum Mill. under acute UV­B exposure. Brazilian Arch. Biol. Technol. 57(3):317–325. doi:10.1590/S1516­ 8913201401678.

Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F. 2011. Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Curr. Gene Ther. 11(1):11–27. doi:10.2174/156652311794520111.

Singh B, Kukreja S, Salaria N, Thakur K, Gautam S, Taunk J, Goutam U. 2019. VIGS: a flexible tool for the study of functional genomics of plants under abiotic stresses. J. Crop Improv. 33(5):567–604. doi:10.1080/15427528.2019.1640821.

Singh G, Tiwari M, Singh SP, Singh R, Singh S, Shirke PA, Trivedi PK, Misra P. 2017. Sterol glycosyltransferases required for adaptation of Withania somnifera at high temperature. Physiol. Plant. 160(3):297–311. doi:10.1111/ppl.12563.

Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. 2020. Breeding and biotechnological interventions for trait improvement: status and prospects. Planta 252(4):54. doi:10.1007/s00425­020­03465­4.

Stoddard BL. 2011. Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15. doi:10.1016/j.str.2010.12.003.

Su Y, Wang Z, Liu F, Li Z, Peng Q, Guo J, Xu L, Que Y. 2016. Isolation and characterization of ScGluD2, a new sugarcane beta­1,3­Glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 stresses. Front. Plant Sci. 7:1348. doi:10.3389/fpls.2016.01348.

Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. 2015. Targeted mutagenesis, precise gene editing, and site­specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169(2):931–945. doi:10.1104/pp.15.00793.

Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B. 2017. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd­accumulating indica rice without compromising yield. Sci. Rep. 7(1):14438. doi:10.1038/s41598­ 017­14832­9.

Tomar M, Sundaresha S, Singh B, Bhardwaj V, Sood S, Singh B, Salaria N, Thakur K, Kumar A, Sharma N, Goutam U. 2021. Validation of molecular response of tuberization in response to elevated temperature by using a transient virus induced gene silencing (VIGS) in potato. Funct. Integr. Genomics 21(2):215–229. doi:10.1007/s10142­021­00771­2.

Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF. 2009. High­frequency modification of plant genes using engineered zincfinger nucleases. Nature 459(7245):442–445. doi:10.1038/nature07845.

Venezia M, Creasey Krainer KM. 2021. Current advancements and limitations of gene editing in orphan crops. Front. Plant Sci. 12:742932. doi:10.3389/fpls.2021.742932.

Vijayalakshmi U, Shourie A. 2019. Yeast extractmediated elicitation of anti­cancerous compounds licoisoflavone B, licochalcone A, and liquirtigenin in callus cultures of Glycyrrhiza glabra. Biotechnologia 100(4):441–451. doi:10.5114/bta.2019.90245.

Villordo­Pineda E, González­Chavira MM, GiraldoCarbajo P, Acosta­Gallegos JA, CaballeroPérez J. 2015. Identification of novel droughttolerant­associated SNPs in common bean (Phaseolus vulgaris). Front. Plant Sci. 6:546. doi:10.3389/fpls.2015.00546.

Wada N, Ueta R, Osakabe Y, Osakabe K. 2020. Precision genome editing in plants: State­of­the­art in CRISPR/Cas9­based genome engineering. BMC Plant Biol. 20(1):234. doi:10.1186/s12870­020­ 02385­5.

Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Song W, Zheng X, Chen C, Zhang Y. 2020. Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int. J. Mol. Sci. 21(7):2288. doi:10.3390/ijms21072288.

Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen QF. 2017a. OsARM1, an R2R3 MYB Transcription factor, is involved in regulation of the response to arsenic stress in rice. Front. Plant Sci. 8:1868. doi:10.3389/fpls.2017.01868.

Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L. 2017b. Reduced drought tolerance by CRISPR/Cas9­mediated SlMAPK3 mutagenesis in tomato plants. J. Agric. Food Chem. 65(39):8674– 8682. doi:10.1021/acs.jafc.7b02745.

Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F. 2019. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol. 16(3):362–375. doi:10.1080/15476286.2019.1574163.

Wenjing W, Chen Q, Singh PK, Huang Y, Pei D. 2020. CRISPR/Cas9 edited HSFA6a and HSFA6b of Arabidopsis thaliana offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis. Plant Signal. Behav. 15(12):1816321. doi:10.1080/15592324.2020.1816321.

Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A. 2018. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol. 177(3):1108–1123. doi:10.1104/pp.18.00209.

Xu Y, Li P, Yang Z, Xu C. 2017. Genetic mapping of quantitative trait loci in crops. Crop J. 5(2):175–184. doi:10.1016/j.cj.2016.06.003.

Xue W, Yan J, Jiang Y, Zhan Z, Zhao G, Tondelli A, Cattivelli L, Cheng J. 2019. Genetic dissection of winter barley seedling response to salt and osmotic stress. Mol. Breed. 39(9):137. doi:10.1007/s11032­ 019­1042­z.

Ye D, Wu L, Li X, Atoba TO, Wu W, Weng H. 2023. A synthetic review of various dimensions of non­destructive plant stress phenotyping. Plants 12(8):1698. doi:10.3390/plants12081698.

Ye H, Du H, Tang N, Li X, Xiong L. 2009. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol. Biol. 71(3):291–305. doi:10.1007/s11103­009­9524­8.

Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X, Yu J. 2018. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor­like kinase­mediated reactive oxygen species signaling in tomato. Plant Cell Physiol. 59(11):2239–2254. doi:10.1093/pcp/pcy146.

Yue E, Cao H, Liu B. 2020. Osmir535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants 9(10):1337. doi:10.3390/plants9101337.

Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A. 2017. Genome­wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol. Breed. 37(3):30. doi:10.1007/s11032­017­0634­8.

Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. 2020. Genome­wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics 21(1):139. doi:10.1186/s12864­ 020­6558­4.

Zhang J, Chen K, Pang Y, Naveed SA, Zhao X, Wang X, Wang Y, Dingkuhn M, Pasuquin J, Li Z, Xu J. 2017a. QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome­wide association study. BMC Genomics 18(1):828. doi:10.1186/s12864­017­4221­5.

Zhang JW, Long Y, Xue MD, Xiao XG, Pei XW. 2017b. Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) Shoots and roots. PLoS One 12(1):e0170330. doi:10.1371/journal.pone.0170330.

Zhang N, Zhang L, Zhao L, Ren Y, Cui D, Chen J, Wang Y, Yu P, Chen F. 2017c. iTRAQ and virus­induced gene silencing revealed three proteins involved in cold response in bread wheat. Sci. Rep. 7(1):7524. doi:10.1038/s41598­017­08069­9.

Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C. 2019. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants 5(5):480–485. doi:10.1038/s41477­019­0405­0.

Zhang Y, Gu S, Du J, Huang G, Shi J, Lu X, Wang J, Yang W, Guo X, Zhao C. 2024. Plant microphenotype: from innovative imaging to computational analysis. Plant Biotechnol. J. 22(4):802–818. doi:10.1111/pbi.14244.

Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X, Xie C. 2016. An alternative strategy for targeted gene replacement in plants using a dual­sgRNA/Cas9 design. Sci. Rep. 6:23890. doi:10.1038/srep23890.

Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 82(4):632–643. doi:10.1111/tpj.12838.



DOI: https://doi.org/10.22146/ijbiotech.94026

Article Metrics

Abstract views : 426 | views : 219

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.