Detecting YouTube Clickbait with Transformer Models: A Comparative Study
Bryan Samuel(1), Theresia Ratih Dewi Saputri(2*)
(1) Universitas Ciputra
(2) Universitas Ciputra
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
D. Varshney and D. K. Vishwakarma, “A unified approach for detection of Clickbait videos on YouTube using cognitive evidences,” Appl. Intell. Dordr. Neth., vol. 51, no. 7, pp. 4214–4235, 2021, doi: 10.1007/s10489-020-02057-9.
D. Fayvishenko and I. Shudrak, “Clickbait and Its Impact on Media Trust: Analytical Review,” State Reg. Ser. Soc. Commun., no. 1(61), pp. 26–32, June 2025, doi: 10.32840/cpu2219-8741/2025.1(61).4.
H. Lu, L. Ehwerhemuepha, and C. Rakovski, “A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance,” BMC Med. Res. Methodol., vol. 22, p. 181, July 2022, doi: 10.1186/s12874-022-01665-y.
A. Chowanda, N. Nadia, and L. M. M. Kolbe, “Identifying clickbait in online news using deep learning,” Bull. Electr. Eng. Inform., vol. 12, no. 3, Art. no. 3, June 2023, doi: 10.11591/eei.v12i3.4444.
P. Rajapaksha, R. Farahbakhsh, and N. Crespi, “BERT, XLNet or RoBERTa: The Best Transfer Learning Model to Detect Clickbaits,” IEEE Access, vol. 9, pp. 154704–154716, 2021, doi: 10.1109/ACCESS.2021.3128742.
J. Sirusstara, N. Alexander, A. Alfarisy, S. Achmad, and R. Sutoyo, “Clickbait Headline Detection in Indonesian News Sites using Robustly Optimized BERT Pre-training Approach (RoBERTa),” in 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS), Sept. 2022, pp. 1–6. doi: 10.1109/AiDAS56890.2022.9918678.
R. Kemm, “The Linguistic and Typological Features of Clickbait in Youtube Video Titles,” Soc. Commun., vol. 23, no. 1, Art. no. 1, Jan. 2022, doi: 10.2478/sc-2022-0007.
T. S. Y. Winarto, K. Wijaya, M. A. Faqih, S. Y. Prasetyo, and Y. Muliono, “Tackling Clickbait with Machine Learning: A Comparative Study of Binary Classification Models for YouTube Title,” Procedia Comput. Sci., vol. 227, pp. 282–290, Jan. 2023, doi: 10.1016/j.procs.2023.10.526.
A. Chaudhary, “Dataset of clickbait and non-clickbait titles.” Accessed: May 21, 2025. [Online]. Available: https://gist.github.com/amitness/0a2ddbcb61c34eab04bad5a17fd8c86b
A. Vierti, alessiovierti/youtube-clickbait-detector. (Aug. 20, 2023). Jupyter Notebook. Accessed: May 21, 2025. [Online]. Available: https://github.com/alessiovierti/youtube-clickbait-detector
H. Alawneh, A. Hasasneh, and M. Maree, “On the Utilization of Emoji Encoding and Data Preprocessing with a Combined CNN-LSTM Framework for Arabic Sentiment Analysis,” Modelling, vol. 5, no. 4, pp. 1469–1489, Dec. 2024, doi: 10.3390/modelling5040076.
S. Kurniawan, A. S. Pramayoga, and Y. F. Ashari, “An Ensemble-Based Approach for Detecting Clickbait in Indonesian Online Media,” J. Masy. Inform., vol. 16, no. 1, pp. 104–118, May 2025, doi: 10.14710/jmasif.16.1.73115.
S. Islam et al., “A comprehensive survey on applications of transformers for deep learning tasks,” Expert Syst. Appl., vol. 241, p. 122666, May 2024, doi: 10.1016/j.eswa.2023.122666.
F. S. Amalia and Y. Suyanto, “Offensive Language and Hate Speech Detection using BERT Model,” IJCCS Indones. J. Comput. Cybern. Syst., vol. 18, no. 4, Art. no. 4, Oct. 2024, doi: 10.22146/ijccs.99841.
I. J. David, M. U. Adehi, and P. O. Ikwuoche, “Cochran’s Q-Test on Soil Helminth Prevalence,” Biom. Lett., vol. 58, no. 2, pp. 169–185, Dec. 2021, doi: 10.2478/bile-2021-0013.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1







