Machine Learning Approaches for Predicting Seasonal Stock Trends
Jason Miracle Gunawan(1), Christopher Andreas(2), Theresia Ratih Dewi Saputri(3*)
(1) Universitas Ciputra Surabaya
(2) Universitas Ciputra Surabaya
(3) Universitas Ciputra
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
. Lawrence, G. S. Thattil, T. Antony, and J. Ittoop, “Stock Market Movements - A Comparative Analysis on Growth Patterns in India’s Leading Stock Exchange,” International Journal of Economics and Financial Issues , vol. 15, no. 2, pp. 235–243, Feb. 2025, doi: 10.32479/ijefi.17865.
G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate, D. Doreswamy, and S. K. Bhat, “Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications,” Sep. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ijfs11030094.
L. Chin, Y. S. Foo, K. S. Chen, F. Taghizadeh-Hesary, and W. L. Lin, “Sustainability of Stock Market Against COVID-19 Pandemic,” International Journal of Economics and Management, vol. 16, no. SpecialIssue1, pp. 33–43, 2022, doi: 10.47836/IJEAMSI.16.1.003.
Tiara, Munawarah, and M. Yunus Kasim, “NAVIGATING FINANCIAL TURBULENCE: HOW DISTRESS AFFECTS STOCK PRICES IN INFRASTRUCTURE, UTILITIES, AND TRANSPORTATION,” Jurnal Keuangan dan Bisnis (JKB) ISSN, vol. 22, no. 2, pp. 160–176, 2024, doi: https://doi.org/10.32524/jkb.v22i2.1205.
S. Perkasa, “Beda Mudik Zaman Dulu dan Masa Kini: Pergeseran Moda hingga Esensi,” https://www.metrotvnews.com/read/KYVC4nVB-beda-mudik-zaman-dulu-dan-masa-kini-pergeseran-moda-hingga-esensi.
K. Maharani, “Mengenal Saham Transportasi dan Potensinya di Pasar Saham,” https://reku.id/campus/mengenal-saham-transportasi-dan-potensinya-di-pasar-saham.
A. A. Putri, “Transportasi Pilihan Masyarakat untuk Mudik Lebaran 2023,” https://data.goodstats.id/statistic/transportasi-pilihan-masyarakat-untuk-mudik-lebaran-2023-hQaqh.
A. A. Afandi, “Forecasting Pertalite Stock Expenditures Using Exponential Smoothing and Linear Regression,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 18, no. 4, Oct. 2024, doi: 10.22146/ijccs.98849.
D. A. Prasetyo and R. Rokhim, “Indonesian Stock Price Prediction using Deep Learning during COVID-19 Financial Crisis,” vol. 3, no. 2, pp. 64–70, 2022, doi: https://doi.org/10.46336/ijbesd.v3i2.273.
H. Dhake, Y. Kashyap, and P. Kosmopoulos, “Algorithms for Hyperparameter Tuning of LSTMs for Time Series Forecasting,” Remote Sens (Basel), vol. 15, no. 8, Apr. 2023, doi: 10.3390/rs15082076.
A. Mamillapalli, B. Ogunleye, S. Timoteo Inacio, and O. Shobayo, “GRUvader: Sentiment-Informed Stock Market Prediction,” Mathematics, vol. 12, no. 23, Dec. 2024, doi: 10.3390/math12233801.
G. Xiong, J. Zhang, X. Fu, J. Chen, and A. W. Mohamed, “Seasonal short-term photovoltaic power prediction based on GSK–BiGRU–XGboost considering correlation of meteorological factors,” J Big Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-024-01037-x.
J. P. Halawa, A. Hermawan, and . J., “Implementation of Linear Regression Algorithm to Predict Stock Prices Based on Historical Data,” bit-Tech, vol. 5, no. 2, pp. 103–112, Dec. 2022, doi: 10.32877/bt.v5i2.616.
K. Qu, “Research on linear regression algorithm,” MATEC Web of Conferences, vol. 395, p. 01046, 2024, doi: 10.1051/matecconf/202439501046.
Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A Pedestrian Detection Method Based on Genetic Algorithm for Optimize XGBoost Training Parameters,” IEEE Access, vol. 7, pp. 118310–118321, 2019, doi: 10.1109/ACCESS.2019.2936454.
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.
H. Dong, D. He, and F. Wang, “SMOTE-XGBoost using Tree Parzen Estimator optimization for copper flotation method classification,” Powder Technol, vol. 375, pp. 174–181, Sep. 2020, doi: 10.1016/J.POWTEC.2020.07.065.
S. khan et al., “Optimizing deep neural network architectures for renewable energy forecasting,” Discover Sustainability, vol. 5, no. 1, Dec. 2024, doi: 10.1007/s43621-024-00615-6.
I. Muthahharah, S. M. Meliyana, and Z. Mar’ah, “Forecasting Indonesia’s Wholesale Price Index (WPI) Using the Holt’s Exponential Smoothing Method,” Quantitative Economics and Management Studies, vol. 6, no. 2, 2025, doi: 10.35877/454RI.qems.
R. A. K. Sherwani, H. Shakeel, W. B. Awan, M. Faheem, and M. Aslam, “Analysis of COVID-19 data using neutrosophic Kruskal Wallis H test,” BMC Med Res Methodol, vol. 21, no. 1, Dec. 2021, doi: 10.1186/s12874-021-01410-x.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1







