Machine Learning Approaches for Predicting Seasonal Stock Trends

https://doi.org/10.22146/ijccs.112504

Jason Miracle Gunawan(1), Christopher Andreas(2), Theresia Ratih Dewi Saputri(3*)

(1) Universitas Ciputra Surabaya
(2) Universitas Ciputra Surabaya
(3) Universitas Ciputra
(*) Corresponding Author

Abstract


The financial market is vital for economic growth yet it often experiences volatility, particularly in Indonesia’s transportation sector where stock prices are strongly affected by seasonal fluctuations. Conventional forecasting methods often neglect these recurring patterns, lowering predictive accuracy. This study assesses the capability of Machine Learning algorithms to capture seasonality in stock price prediction, using PT Garuda Indonesia (Persero) Tbk (GIAA.JK)’s monthly data from August 2019 to May 2025, retrieved from Yahoo Finance. Four models–Linear Regression, Extreme Gradient Boosting (XGBoost), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM)–were trained and tested, with performance evaluated using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Hyperparameter tuning was applied to XGBoost, LSTM, and GRU, while statistical validation employed the Kruskal-Wallis test. Results showed that the tuned GRU outperformed other models, achieving MAE of 5.90, RMSE of 7.33, and MAPE of 9.67%, demonstrating ‘excellent’ accuracy in modelling both short-term and seasonal dynamics. These findings highlight the superiority of GRU in modelling both short-term fluctuations and long-term seasonal dependencies in stock prices. The results contribute practical insights for investors and emphasize the importance of integrating seasonality in predictive models for volatile sectors

Keywords


machine learning; Gated Recurrent Unit; Stock Price Forecasting; Seasonal Pattern Analysis; Indonesia Transportation Sector

Full Text:

PDF


References

. Lawrence, G. S. Thattil, T. Antony, and J. Ittoop, “Stock Market Movements - A Comparative Analysis on Growth Patterns in India’s Leading Stock Exchange,” International Journal of Economics and Financial Issues , vol. 15, no. 2, pp. 235–243, Feb. 2025, doi: 10.32479/ijefi.17865.

G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate, D. Doreswamy, and S. K. Bhat, “Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications,” Sep. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ijfs11030094.

L. Chin, Y. S. Foo, K. S. Chen, F. Taghizadeh-Hesary, and W. L. Lin, “Sustainability of Stock Market Against COVID-19 Pandemic,” International Journal of Economics and Management, vol. 16, no. SpecialIssue1, pp. 33–43, 2022, doi: 10.47836/IJEAMSI.16.1.003.

Tiara, Munawarah, and M. Yunus Kasim, “NAVIGATING FINANCIAL TURBULENCE: HOW DISTRESS AFFECTS STOCK PRICES IN INFRASTRUCTURE, UTILITIES, AND TRANSPORTATION,” Jurnal Keuangan dan Bisnis (JKB) ISSN, vol. 22, no. 2, pp. 160–176, 2024, doi: https://doi.org/10.32524/jkb.v22i2.1205.

S. Perkasa, “Beda Mudik Zaman Dulu dan Masa Kini: Pergeseran Moda hingga Esensi,” https://www.metrotvnews.com/read/KYVC4nVB-beda-mudik-zaman-dulu-dan-masa-kini-pergeseran-moda-hingga-esensi.

K. Maharani, “Mengenal Saham Transportasi dan Potensinya di Pasar Saham,” https://reku.id/campus/mengenal-saham-transportasi-dan-potensinya-di-pasar-saham.

A. A. Putri, “Transportasi Pilihan Masyarakat untuk Mudik Lebaran 2023,” https://data.goodstats.id/statistic/transportasi-pilihan-masyarakat-untuk-mudik-lebaran-2023-hQaqh.

A. A. Afandi, “Forecasting Pertalite Stock Expenditures Using Exponential Smoothing and Linear Regression,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 18, no. 4, Oct. 2024, doi: 10.22146/ijccs.98849.

D. A. Prasetyo and R. Rokhim, “Indonesian Stock Price Prediction using Deep Learning during COVID-19 Financial Crisis,” vol. 3, no. 2, pp. 64–70, 2022, doi: https://doi.org/10.46336/ijbesd.v3i2.273.

H. Dhake, Y. Kashyap, and P. Kosmopoulos, “Algorithms for Hyperparameter Tuning of LSTMs for Time Series Forecasting,” Remote Sens (Basel), vol. 15, no. 8, Apr. 2023, doi: 10.3390/rs15082076.

A. Mamillapalli, B. Ogunleye, S. Timoteo Inacio, and O. Shobayo, “GRUvader: Sentiment-Informed Stock Market Prediction,” Mathematics, vol. 12, no. 23, Dec. 2024, doi: 10.3390/math12233801.

G. Xiong, J. Zhang, X. Fu, J. Chen, and A. W. Mohamed, “Seasonal short-term photovoltaic power prediction based on GSK–BiGRU–XGboost considering correlation of meteorological factors,” J Big Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-024-01037-x.

J. P. Halawa, A. Hermawan, and . J., “Implementation of Linear Regression Algorithm to Predict Stock Prices Based on Historical Data,” bit-Tech, vol. 5, no. 2, pp. 103–112, Dec. 2022, doi: 10.32877/bt.v5i2.616.

K. Qu, “Research on linear regression algorithm,” MATEC Web of Conferences, vol. 395, p. 01046, 2024, doi: 10.1051/matecconf/202439501046.

Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A Pedestrian Detection Method Based on Genetic Algorithm for Optimize XGBoost Training Parameters,” IEEE Access, vol. 7, pp. 118310–118321, 2019, doi: 10.1109/ACCESS.2019.2936454.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

H. Dong, D. He, and F. Wang, “SMOTE-XGBoost using Tree Parzen Estimator optimization for copper flotation method classification,” Powder Technol, vol. 375, pp. 174–181, Sep. 2020, doi: 10.1016/J.POWTEC.2020.07.065.

S. khan et al., “Optimizing deep neural network architectures for renewable energy forecasting,” Discover Sustainability, vol. 5, no. 1, Dec. 2024, doi: 10.1007/s43621-024-00615-6.

I. Muthahharah, S. M. Meliyana, and Z. Mar’ah, “Forecasting Indonesia’s Wholesale Price Index (WPI) Using the Holt’s Exponential Smoothing Method,” Quantitative Economics and Management Studies, vol. 6, no. 2, 2025, doi: 10.35877/454RI.qems.

R. A. K. Sherwani, H. Shakeel, W. B. Awan, M. Faheem, and M. Aslam, “Analysis of COVID-19 data using neutrosophic Kruskal Wallis H test,” BMC Med Res Methodol, vol. 21, no. 1, Dec. 2021, doi: 10.1186/s12874-021-01410-x.



DOI: https://doi.org/10.22146/ijccs.112504

Article Metrics

Abstract views : 542 | views : 406

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2