APPLICATION OF DATA MINING USING THE C4.5 ALGORITHM AND THE K-NEAREST NEIGHBOR (KNN)

https://doi.org/10.22146/ijccs.96515

Nurmayanti Nurmayanti(1*), Supriyanto Supriyanto(2), Merri Parida(3), Sartika Sartika(4)

(1) Information systems, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia, Lampung
(2) Department of Information Systems, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia, Lampung
(3) Information systems, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia, Lampung
(4) Information systems, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia, Lampung
(*) Corresponding Author

Abstract


Direct cash assistance is a governmental or social institution intervention that provides financial aid directly to individuals or families in need. To streamline this process, a system is necessary to convert data into predictive information regarding eligibility for direct cash assistance. This research utilizes the C4.5 algorithm and the K-Nearest Neighbor algorithm for predicting eligibility based on factors such as housing status, employment, income, and eligibility status. Using the C4.5 algorithm, Microsoft Excel calculations identified 238 individuals as eligible and predicted 62 as ineligible who were eligible, out of a total of 300 recipients. The accuracy rate from RapidMiner calculations was 93.00%. Regarding the K-Nearest Neighbor method, Microsoft Excel calculations identified 226 eligible and 74 ineligible recipients out of 300. RapidMiner analysis showed an accuracy rate of 76.55% for the 226 eligible recipients and 98.23% for the 74 ineligible recipients.



Keywords


Algoritma C4.5, K-Nearest Neighbor, Data mining, BLT

Full Text:

PDF


References

Y. S. Siregar, B. O. Sembiring, H. Hasdiana, A. R. Dewi, and H. Harahap, “Algortihm C4.5 in mapping the admission patterns of new Students in Engineering Computer,” SinkrOn, vol. 6, no. 1, pp. 80–90, 2021, [Online]. Available: https://jurnal.polgan.ac.id/index.php/sinkron/article/view/11154 [2] A. Primadewi, F. A. Kurniawan, and E. U. Artha, “Using Data Mining with C4.5 Algorithm for Student Department Selection at MTs N Kaliangkrik,” Borobudur Informatics Rev., vol. 1, no. 1, pp. 22–36, 2021, doi: 10.31603/binr.4989. [3] J. R. M. Ledoh, F. E. Andreas, E. S. Y. Pandie, and C. E. Amos Pah, “C4.5 Algorithm Implementation to Predict Student Satisfaction Level of Lecturer’s Performance in the Covid-19 Pandemic,” Komputasi J. Ilm. Ilmu Komput. dan Mat., vol. 20, no. 2, pp. 126–134, 2023, doi: 10.33751/komputasi.v20i2.8284. [4] J. Riyono, A. L. R. Putri, and C. E. Pujiastuti, “Early Detection of COVID-19 Disease Based on Behavioral Parameters and Symptoms Using Algorithm-C5.0,” Indones. J. Artif. Intell. Data Min., vol. 6, no. 1, p. 47, 2023, doi: 10.24014/ijaidm.v6i1.22074. [5] m s mauludin and l hermawanti, “Merger C4. 5 Algorithm and 3. Adaboost for Determining the Department Ipa Students Graduation in Sma Islam Sultan Fatah Wedung Demak,” Proceeding …, pp. 3–7, 2016, [Online]. Available: https://www.publikasiilmiah.unwahas.ac.id/index.php/isc/article/view/1664/0 [6] F. Riandari and H. T. Sihotang, “Implementation Of C4.5 Algorithm To Analyze Library Satisfaction Visitors,” Pelita Nusant. Medan Jln. Iskandar Muda, vol. 4, no. 2, pp. 1076–1084, 2020, [Online]. Available: https://iocscience.org/ejournal/index.php/mantik [7] E. B. Wijaya, A. Dharma, D. Heyneker, and J. Vanness, “Comparison of the K-Means Algorithm and C4.5 Against Sales Data,” SinkrOn, vol. 8, no. 2, pp. 741–751, 2023, doi: 10.33395/sinkron.v8i2.12224. [8] Y. Perwira, A. Sitohang, M. Pandjaitan, and K. Simamora, “Application of the Classification Decision Tree Method to Determine Student Satisfaction Factors for Student Services,” vol. 13, no. 02, pp. 87–93, 2023. [9] E. V. Astuti, A. Afandi, and D. M. Efendi, “Classification and Clustering of Internet Quota Sales Data Using C4.5 Algorithm and K-Means,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 2, pp. 268–283, 2023, doi: 10.26555/jiteki.v9i2.25970. [10] N. A. Prahastiwi, R. Andreswari, and R. Fauzi, “Students Graduation Prediction Based on Academic Data Record Using the Decision Tree Algorithm C4.5 Method,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 8, no. 3, pp. 295–304, 2022, doi: 10.33330/jurteksi.v8i3.1680. [11] A. T. Indal Karim and S. Sudianto, “Dominant Requirements for Student Graduation in the Faculty of Informatics using the C4.5 Algorithm,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 3, no. 2, pp. 50–58, 2023, doi: 10.20895/dinda.v3i2.1040.



DOI: https://doi.org/10.22146/ijccs.96515

Article Metrics

Abstract views : 768 | views : 430

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2